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The Dynamic World of Words
What is the "brat summer"?
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Figure 1: Graffiti on a wall in Crema, Italy
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The Dynamic World of Words
Collins Dictionary's 2024 word of the year
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Figure 2: Collins Dictionary's 2024 word of the year



The Dynamic World: New words, slang, names – language evolves 

daily! (Think social media, tech).

The Machine Challenge: Natural language is dynamic. How do AI 

models keep up?

The Old Problem (Pre-2017):
Many models: Fixed vocabulary.
New/rare word? → Placeholder: <UNK> (unknown). 

Model effectively says: I don’t know this word!
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The Dynamic World of Words
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Figure 3: The <UNK> token issue



Lost Information:
"Gene editing with CRISPR"→ "...with <UNK>."Key details vanish! 

Fantasy names ("Daenerys,Hogwarts") become <UNK> → Story breaks.

Impacted Applications:
Machine Translation: How to translate a new term if it’s <UNK>? 

Speech Recognition: What about new slang or brand names? 

Autocorrection: Can’t suggest fixes for words it’s never seen.

The Problem with <UNK>
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Figure 4: The problem with <UNK> token.



The Big Idea (Mid-2010s): What if LMs learned from character sequences, not just whole words?
What if LMs learned from character sequences, not just whole words?

Why Exciting?
Open Vocabulary: Can form any word, even unseen ones, by learning spelling rules (orthography).

Bye-Bye <UNK> (Mostly): Naturally handles new words by building them character-by-character.

A New Direction: Thinking in Characters!
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Figure 5: An example of a character-level language model



The Burstiness Problem
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The Lingering Issue:
Solved "can I form this word?"

But, early versions didn’t efficiently "remember"to reuse newly formed complex words (the "burstiness"problem).

Figure 6: The Bustiness problem.



Core Idea (2017): An elegant solution combining:
Character-level generation.

A smart "memory"(cache) system.

Model Intelligently Decides:
Generate from scratch (for new/varied words)? 

OR "Copy"from cache (for recent, "bursty"words)?

Imagine: Writing a report & coining a new term.
1st time: Type carefully (char-level generation).  

Next few times: Copy-paste / quick recall (caching!).

Our Focus: Kawakami, Dyer, Blunsom (2017)
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In Today’s Seminar, We’ll Explore:
Their Hierarchical LSTM + word cache architecture. 

How the model learns to create AND reuse words. 

Key experiments and results showcasing its strengths. 

The paper’s impact on language model evolution.

Seminar Roadmap
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Why LSTMs? (∼2015-2017 was peak LSTM!):
Basic RNNs: Try to "remember"past to inform current predictions.

Problem: Simple RNNs struggled with "long-term memory"

LSTMs (Long Short-Term Memory): Advanced RNNs with "gates"(input, forget, output) to control information flow.

In 2017, LSTMs were NLP’s go-to for sequence modeling:
Excelled at capturing longer dependencies in text.

Key Tech of the Era: LSTMs (Quick Refresher)
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Figure 7: Architecture of  RNN and LSTM  



Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

Character-level generation for novel words 

Cache mechanism for reuse of prior words 

Built with 3 LSTMs + a memory module

Model Overview
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Figure 8: Model Overview



Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

Character-level generation for novel words 

Cache mechanism for reuse of prior words 

Built with 3 LSTMs + a memory module

Model Overview
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Figure 9: Description of HCLM



ModelOverview
How the model predicts the next word wt
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Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

1. Generating from Scratch: Creating the word character by character, like spelling it out.

2. Reusing from Memory: Picking a word it has seen recently. (Handled by the Cache part)

Figure 9: Description of HCLM



HCLM Role: Generates words from scratch, character-by-character.

Two Levels of Hierarchy:
Characters → Word Vector:

LSTMenc reads previous word (e.g., w t−1) char-by-char.
enc
t−1 t−1Output: Single vector h representing w (meaning from chars!).

Path 1: Generating from Scratch (HCLM)
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Figure 10: The character encoder’s working process



HCLM Role: Generates words from scratch, character-by-character.

Two Levels of Hierarchy:
Word Vectors → Sentence Context:

1 t−1LSTMctx processes sequence of word vectors (henc, . . . , henc ).

tOutput: Context vector hctx summarizing sentence so far.

Path 1: Generating from Scratch (HCLM)
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Figure 11: The world-level context encoder’s working process



HCLM Role: Generates words from scratch, character-by-character.

Two Levels of Hierarchy:
Generation → Next Word:

LSTMdec uses hctx as starting point.t

Generates current word wt one character at a time.

Path 1: Generating from Scratch (HCLM)
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Figure 12: The character decoder’s working process



Cache Role: Smart short-term memory for 

recent words.

pptr(wt |ht, cachet) – probability of

wt by copying from cache.
How It Works:

Storing: Generated word (e.g., "Pokémon") + 

its generation state (ht ) → added to cache.

Limited Size (K items): Least Recently Used 

(LRU) item removed if full.

Path 2: Reusing from Memory (Cache)
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Figure 13: The cache mechanism’s working process



Cache Role: Smart short-term memory for 

recent words.

Smart Retrieval ("Pointer"via Attention):
Current context ht → forms "query"rt .

Query rt compared to keys (stored states) in 

cache.

Attention: Calculates relevance scores for 

cached items.

Softmax over scores → probability of copying 

each cached word.

Path 2: Reusing from Memory (Cache)
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Figure 13: The cache mechanism’s working process



Given context vector ht :

Compute query vector:

rt = tanh(Wqht + bq )

For each cache key ki , compute:

ui,t = v ⊤ tanh(Wuki + rt )

Pointer probability:

pptr(wt |ht ) = 
Σ  

softmaxi (ui,t )

i:mi =wt

Path 2: Reusing from Memory (Cache): Pointer Network
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Figure 13: The cache mechanism’s working process



.

The model doesn’t just guess; it intelligently blends the two 

paths:

The final probability is a mix:

p(wt ) = λt plm(wt ) +(1 − λt ) pptr(wt )
`
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(p(wt | w<t ) shorthand for p(wt ) above)

The Gatekeeper (λt ):
A small neural network (MLP) looks at the current context (ht ) 

It outputs a value λt (between 0 and 1).

If λt ≈ 1: Favors generating the word (HCLM). 

If λt ≈ 0: Favors reusing a word (Cache).

*The gate λ t  (center) decides between HCLM (right) and Cache (left).

The Smart Switch: Combining Both Paths
How the model decides to generate or reuse
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Figure 9: Description of HCLM



Mixing coefficient λt in the paper: The paper defines λt

as:

γt = MLP(ht )

1
λt = 

1 − e−γt

It is computed using an MLP based on the context ht .

t 1−e−γt
Question: The paper’s formulation for λ is 1  . Is

this intended?
The standard logistic sigmoid is σ(x ) = 1

1+e−x .
The paper’s version could lead to values outside [0, 1] or 

division by zero if γt = 0.

Mixture of LM and Cache: A Question on λt
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Figure 14: The graph of two functions



Penn Treebank (PTB):
Preprocessed version with fixed vocabulary 

No OOVs – serves as sanity check

WikiText-2:
Open-vocabulary corpus from Wikipedia 

Higher OOV rate, more realistic

Multilingual Wikipedia Corpus (MWC):
7 languages: EN, FR, DE, ES, RU, CS, FI
Comparable articles across languages 

Diverse morphological structures

Datasets
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Figure 15: Illustration of the datasets



Goal: Maximize log likelihood of training data words. (Model should assign high probability to real text). Loss function:

L  = − 
Σ  

log p(wt |w<t )

t

All parameters trained jointly: 

Character embeddings 

LSTM weights

Attention (pointer) weights 

Mixture coefficient MLP

No supervision for when to copy!

Training Objective
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Model Configuration:

LSTM hidden units: 600 hidden units 

Character embeddings: 600 dims 

Cache size: 100 word slots

Comparable to other strong models of the time.

Training Details:

Optimizer: Adam

Standard techniques: Learning rate schedule, gradient 

clipping, dropout.

Evaluation Metric: Bits-Per-Character (bpc)

What is it? Measures how surprised the model is by the 

next character it sees.

Think of it like a guessing game:
If the model is very certain about the next character it uses 

fewer "bits"to encode it. 

If it’s very unsure, it uses more "bits".

Lower bpc is better! Indicates a model that 

understands the language structure well.

Setting Up the Experiment (2017)
Key configurations and how success was measured
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Datasets:

2017: PTB, WikiText-2, MWC

Size: Millions to low Tens of Millions tokens

2025: The Pile, SlimPajama, CC-Net 

Size: Trillions of tokens

Diverse: Code, multilingual, instruction-tuned 

Long-context benchmarks

Ease of Replication & Advancement: 

Compute Power:
2017: Titan Xp (12 TFLOPs FP32)

2025: RTX 50xx (19.18-318 + TFLOPs FP32 + Tensor Core)

Tools & Libraries:
2017: Early PyTorch / TF1.x
2025: Mature PyTorch/TF2/JAX, Hugging Face, AMP, 

advanced optimizers

A 2025 Perspective on Datasets & Experiments
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Key Insights Findings for PTB

Cache adds boost even on non-ideal dataset

Model competitive without complex tricks

Suggests benefit even for frequent word repetition

Results: Penn Tree Bank (PTB)
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Table 1: Results on PTB Corpus (bits-per-character). 



Key Insights Findings for WikiText-2

Cache improved performance by 10.2% 

over HCLM on challenging dataset

Character-level model with cache rivals word-level models

Results: WikiText-2 (Realistic Open-Vocabulary)
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Table 2: Results on WikiText-2 Corpus .



Table 3: MWC Performance - HCLM+Cache vs. Baselines (Test bpc)

Key Insights Findings for MWC

Significant improvement with cache 

Model effectively reuses word forms in varied linguistic structures.

Architecture benefits (creating and reusing words) not language-specific.

Results: Multilingual Wikipedia Corpus (MWC)
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The Big Question: Is the cache just a dumb buffer, or is it being used intelligently? The authors investigated!p(z | w ): 

Average cache probability for word w after its first use.

They looked at p(z∣w) – the probability that a given word w was generated by copying from the cache (z=1) versus 

being spelled out by the HCLM (z=0).

How is the Cache Actually Used?
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Examining p(z | w ): avg. posterior cache 

probability (after 1st use)

Cache Favors:
Punctuation  frequent words (e.g., ".", "the").

Proper nouns (e.g., "Lesnar", "NY") due to burstiness.

LM Favors:
Numbers (e.g., "300", "770"), which rarely repeat identically. 

Common content words (e.g., "act", "however").

Conclusion: Cache handles repetition; LM handles 

flexibility and non-repetitive words.

Table 4: Word Types with High/Low Cache Probability 

Cache Use for General Words (WikiText-2 Test)
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Words seen <5 times in training; (rare 

words in the training data)

Cache Favors (Rare Words):
Proper nouns/entities (e.g., "Gore", "Nero") if reused in test. 

Specific identifiers (e.g., "31B", "CR").

LM Favors (Rare Words):
Numbers (e.g., "770").
Non-specific content words (e.g., "Pitcher", "consul") if not 

locally bursty.

Conclusion: Cache effectively handles rare words if 

they become locally bursty in new contexts.

Table 5 : Cache Probability for Rare Training Words

CacheUsefor RareWords fromTrainingSet
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OOV word cache probability p(z | w ) vs. test set 

frequency

Trend: Higher test set frequency for OOV words often 

means higher cache probability.

Top-Right: Frequently reused OOVs (e.g., new proper 

nouns) are cached.

Bottom-Left: Infrequent OOVs (e.g., new common 

words) generated by LM.

Conclusion: Cache effectively identifies and reuses 

bursty OOV words. Figure 16: OOV word avg. cache probability vs. 

test set frequency.

CacheUsefor OOVWords



Observations from data suggest the model learns:

Cache is preferentially used for:

Proper Nouns (e.g., "Lesnar", "Gore", "Nero") →

Captures burstiness.

Very Frequent Words Punctuation (e.g., "the", ".", ",").

"Bursty" OOV words if reused (often names）

Language Model (HCLM) is for:

Numbers (e.g., "300", "770", "246") → Tend not to 

repeat.

Generic Content Words (e.g., "act", “Sounds", "Pitcher").

Most OOV words, especially if not repeated often.

Key Insight

The model effectively distinguishes: word creation vs. word reuse. 

Cache adaptively handles "burstiness" of specific word types.

Analysis Summary
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Novel: Hierarchical Character LM + Adaptive Cache (HCLM+Cache) for open-vocabulary LM. 

Model creates new words (HCLM)  captures ’bursty’ reuse (cache).

New: Multilingual Wikipedia Corpus (MWC) for cross-lingual LM evaluation. 

Effective across diverse languages  datasets (PTB, WikiText-2, MWC).

Key Contributions (Kawakami et al., 2017)
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HCLM+Cache (LSTMs): Not widely adopted long-term.

Why? Rapid NLP Evolution

Shift: RNNs/LSTMs rightarrow Transformers (2017). 

Rise: Large-Scale Pre-training (BERT, GPT).

Adoption: Subword Tokenization.

Adoption Since 2017: The HCLM+Cache Path
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How Large Language Models address these today:

1. OOV Words (Open Vocabulary):
Subword Tokenization (BPE, WordPiece). 

Standard in BERT, GPT, etc.

Finite subword vocabulary rightarrow represents any word. 

Reduces <unk>, better morphology.

2. Word Reuse Context (Burstiness):
Transformer Architecture  Attention:

Self-attention weighs all prior tokens in context. 
Implicitly captures burstiness co-occurrence.

Longer Context Windows.

Large-Scale Pre-training (learns complex patterns).

Modern LLMs: Tackling OOV Burstiness
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From a 2025 perspective, the approach had limitations:

Reliance on LSTMs:
Less parallelizable during training compared to Transformers. 

Harder to scale to the massive sizes of modern models.

Character-level processing: Can be computationally slow for long sequences.

Assumes pre-segmented words: This is problematic for languages without clear word boundaries (e.g., Chinese, 

Japanese, Thai). Subword models handle this more naturally.

Explicit Cache Necessity: An explicit cache is useful for certain LSTMs but may be less critical or need redesign

for strong Transformer models with robust attention-based contextual memory.

Limitations of the 2017 Paper (In Hindsight)
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Despite not being the dominant architecture today, the paper offers valuable insights:

Explicit Modeling of Linguistic Phenomena: A reminder that directly addressing known properties (like burstiness, 

OOV) can guide model design and yield improvements.

Hybrid Approaches: Cleverly combined fine-grained generation (character-level) with coarser-grained reuse 

(word-level cache).

Memory/Cache Concepts : The idea of incorporating a local, dynamic memory or cache continues to inspire

related concepts (e.g., aspects of Retrieval-Augmented Generation (RAG), memory networks). 

Value of Multilingual Evaluation: The MWC dataset and cross-lingual results highlighted the importance of 

testing beyond English early on.

Inspirations Lasting Value from This Paper
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