
Learning to Create and Reuse Words

in Open-Vocabulary Neural

Language Modeling
Presenter: Zhaokun Wang | May 21, 2025

1.Introduction

2.Method

3. Experiments

4. Results Analysis

5. Conclusion

Content

Introduction Method Experiments Results Analysis Conclusion

The Dynamic World of Words
What is the "brat summer"?

3/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Figure 1: Graffiti on a wall in Crema, Italy

Introduction Method Experiments Results Analysis Conclusion

The Dynamic World of Words
Collins Dictionary's 2024 word of the year

4/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Figure 2: Collins Dictionary's 2024 word of the year

The Dynamic World: New words, slang, names – language evolves

daily! (Think social media, tech).

The Machine Challenge: Natural language is dynamic. How do AI

models keep up?

The Old Problem (Pre-2017):
Many models: Fixed vocabulary.
New/rare word? → Placeholder: <UNK> (unknown).

Model effectively says: I don’t know this word!

Introduction Method Experiments Results Analysis Conclusion

The Dynamic World of Words

5/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Figure 3: The <UNK> token issue

Lost Information:
"Gene editing with CRISPR"→ "...with <UNK>."Key details vanish!

Fantasy names ("Daenerys,Hogwarts") become <UNK> → Story breaks.

Impacted Applications:
Machine Translation: How to translate a new term if it’s <UNK>?

Speech Recognition: What about new slang or brand names?

Autocorrection: Can’t suggest fixes for words it’s never seen.

The Problem with <UNK>

6/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 4: The problem with <UNK> token.

The Big Idea (Mid-2010s): What if LMs learned from character sequences, not just whole words?
What if LMs learned from character sequences, not just whole words?

Why Exciting?
Open Vocabulary: Can form any word, even unseen ones, by learning spelling rules (orthography).

Bye-Bye <UNK> (Mostly): Naturally handles new words by building them character-by-character.

A New Direction: Thinking in Characters!

7/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 5: An example of a character-level language model

The Burstiness Problem

8/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

The Lingering Issue:
Solved "can I form this word?"

But, early versions didn’t efficiently "remember"to reuse newly formed complex words (the "burstiness"problem).

Figure 6: The Bustiness problem.

Core Idea (2017): An elegant solution combining:
Character-level generation.

A smart "memory"(cache) system.

Model Intelligently Decides:
Generate from scratch (for new/varied words)?

OR "Copy"from cache (for recent, "bursty"words)?

Imagine: Writing a report & coining a new term.
1st time: Type carefully (char-level generation).

Next few times: Copy-paste / quick recall (caching!).

Our Focus: Kawakami, Dyer, Blunsom (2017)

9/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

In Today’s Seminar, We’ll Explore:
Their Hierarchical LSTM + word cache architecture.

How the model learns to create AND reuse words.

Key experiments and results showcasing its strengths.

The paper’s impact on language model evolution.

Seminar Roadmap

10/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Why LSTMs? (∼2015-2017 was peak LSTM!):
Basic RNNs: Try to "remember"past to inform current predictions.

Problem: Simple RNNs struggled with "long-term memory"

LSTMs (Long Short-Term Memory): Advanced RNNs with "gates"(input, forget, output) to control information flow.

In 2017, LSTMs were NLP’s go-to for sequence modeling:
Excelled at capturing longer dependencies in text.

Key Tech of the Era: LSTMs (Quick Refresher)

11/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 7: Architecture of RNN and LSTM

Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

Character-level generation for novel words

Cache mechanism for reuse of prior words

Built with 3 LSTMs + a memory module

Model Overview

12/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 8: Model Overview

Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

Character-level generation for novel words

Cache mechanism for reuse of prior words

Built with 3 LSTMs + a memory module

Model Overview

13/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 9: Description of HCLM

ModelOverview
How the model predicts the next word wt

14/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

1. Generating from Scratch: Creating the word character by character, like spelling it out.

2. Reusing from Memory: Picking a word it has seen recently. (Handled by the Cache part)

Figure 9: Description of HCLM

HCLM Role: Generates words from scratch, character-by-character.

Two Levels of Hierarchy:
Characters → Word Vector:

LSTMenc reads previous word (e.g., w t−1) char-by-char.
enc
t−1 t−1Output: Single vector h representing w (meaning from chars!).

Path 1: Generating from Scratch (HCLM)

15/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 10: The character encoder’s working process

HCLM Role: Generates words from scratch, character-by-character.

Two Levels of Hierarchy:
Word Vectors → Sentence Context:

1 t−1LSTMctx processes sequence of word vectors (henc, . . . , henc).

tOutput: Context vector hctx summarizing sentence so far.

Path 1: Generating from Scratch (HCLM)

16/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 11: The world-level context encoder’s working process

HCLM Role: Generates words from scratch, character-by-character.

Two Levels of Hierarchy:
Generation → Next Word:

LSTMdec uses hctx as starting point.t

Generates current word wt one character at a time.

Path 1: Generating from Scratch (HCLM)

17/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 12: The character decoder’s working process

Cache Role: Smart short-term memory for

recent words.

pptr(wt |ht, cachet) – probability of

wt by copying from cache.
How It Works:

Storing: Generated word (e.g., "Pokémon") +

its generation state (ht) → added to cache.

Limited Size (K items): Least Recently Used

(LRU) item removed if full.

Path 2: Reusing from Memory (Cache)

18/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 13: The cache mechanism’s working process

Cache Role: Smart short-term memory for

recent words.

Smart Retrieval ("Pointer"via Attention):
Current context ht → forms "query"rt .

Query rt compared to keys (stored states) in

cache.

Attention: Calculates relevance scores for

cached items.

Softmax over scores → probability of copying

each cached word.

Path 2: Reusing from Memory (Cache)

19/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 13: The cache mechanism’s working process

Given context vector ht :

Compute query vector:

rt = tanh(Wqht + bq)

For each cache key ki , compute:

ui,t = v ⊤ tanh(Wuki + rt)

Pointer probability:

pptr(wt |ht) =
Σ

softmaxi (ui,t)

i:mi =wt

Path 2: Reusing from Memory (Cache): Pointer Network

20/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

over Cache

Introduction Method Experiments Results Analysis Conclusion

Figure 13: The cache mechanism’s working process

.

The model doesn’t just guess; it intelligently blends the two

paths:

The final probability is a mix:

p(wt) = λt plm(wt) +(1 − λt) pptr(wt)
`
G e n

˛
e
¸
r a t e

x `
Re

˛
u
¸
se

x

(p(wt | w<t) shorthand for p(wt) above)

The Gatekeeper (λt):
A small neural network (MLP) looks at the current context (ht)

It outputs a value λt (between 0 and 1).

If λt ≈ 1: Favors generating the word (HCLM).

If λt ≈ 0: Favors reusing a word (Cache).

*The gate λ t (center) decides between HCLM (right) and Cache (left).

The Smart Switch: Combining Both Paths
How the model decides to generate or reuse

21/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 9: Description of HCLM

Mixing coefficient λt in the paper: The paper defines λt

as:

γt = MLP(ht)

1
λt =

1 − e−γt

It is computed using an MLP based on the context ht .

t 1−e−γt
Question: The paper’s formulation for λ is 1 . Is

this intended?
The standard logistic sigmoid is σ(x) = 1

1+e−x .
The paper’s version could lead to values outside [0, 1] or

division by zero if γt = 0.

Mixture of LM and Cache: A Question on λt

22/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 14: The graph of two functions

Penn Treebank (PTB):
Preprocessed version with fixed vocabulary

No OOVs – serves as sanity check

WikiText-2:
Open-vocabulary corpus from Wikipedia

Higher OOV rate, more realistic

Multilingual Wikipedia Corpus (MWC):
7 languages: EN, FR, DE, ES, RU, CS, FI
Comparable articles across languages

Diverse morphological structures

Datasets

23/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 15: Illustration of the datasets

Goal: Maximize log likelihood of training data words. (Model should assign high probability to real text). Loss function:

L = −
Σ

log p(wt |w<t)

t

All parameters trained jointly:

Character embeddings

LSTM weights

Attention (pointer) weights

Mixture coefficient MLP

No supervision for when to copy!

Training Objective

24/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Model Configuration:

LSTM hidden units: 600 hidden units

Character embeddings: 600 dims

Cache size: 100 word slots

Comparable to other strong models of the time.

Training Details:

Optimizer: Adam

Standard techniques: Learning rate schedule, gradient

clipping, dropout.

Evaluation Metric: Bits-Per-Character (bpc)

What is it? Measures how surprised the model is by the

next character it sees.

Think of it like a guessing game:
If the model is very certain about the next character it uses

fewer "bits"to encode it.

If it’s very unsure, it uses more "bits".

Lower bpc is better! Indicates a model that

understands the language structure well.

Setting Up the Experiment (2017)
Key configurations and how success was measured

25/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Datasets:

2017: PTB, WikiText-2, MWC

Size: Millions to low Tens of Millions tokens

2025: The Pile, SlimPajama, CC-Net

Size: Trillions of tokens

Diverse: Code, multilingual, instruction-tuned

Long-context benchmarks

Ease of Replication & Advancement:

Compute Power:
2017: Titan Xp (12 TFLOPs FP32)

2025: RTX 50xx (19.18-318 + TFLOPs FP32 + Tensor Core)

Tools & Libraries:
2017: Early PyTorch / TF1.x
2025: Mature PyTorch/TF2/JAX, Hugging Face, AMP,

advanced optimizers

A 2025 Perspective on Datasets & Experiments

26/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Key Insights Findings for PTB

Cache adds boost even on non-ideal dataset

Model competitive without complex tricks

Suggests benefit even for frequent word repetition

Results: Penn Tree Bank (PTB)

27/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Table 1: Results on PTB Corpus (bits-per-character).

Key Insights Findings for WikiText-2

Cache improved performance by 10.2%

over HCLM on challenging dataset

Character-level model with cache rivals word-level models

Results: WikiText-2 (Realistic Open-Vocabulary)

28/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Table 2: Results on WikiText-2 Corpus .

Table 3: MWC Performance - HCLM+Cache vs. Baselines (Test bpc)

Key Insights Findings for MWC

Significant improvement with cache

Model effectively reuses word forms in varied linguistic structures.

Architecture benefits (creating and reusing words) not language-specific.

Results: Multilingual Wikipedia Corpus (MWC)

29/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

The Big Question: Is the cache just a dumb buffer, or is it being used intelligently? The authors investigated!p(z | w):

Average cache probability for word w after its first use.

They looked at p(z∣w) – the probability that a given word w was generated by copying from the cache (z=1) versus

being spelled out by the HCLM (z=0).

How is the Cache Actually Used?

30/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Examining p(z | w): avg. posterior cache

probability (after 1st use)

Cache Favors:
Punctuation frequent words (e.g., ".", "the").

Proper nouns (e.g., "Lesnar", "NY") due to burstiness.

LM Favors:
Numbers (e.g., "300", "770"), which rarely repeat identically.

Common content words (e.g., "act", "however").

Conclusion: Cache handles repetition; LM handles

flexibility and non-repetitive words.

Table 4: Word Types with High/Low Cache Probability

Cache Use for General Words (WikiText-2 Test)

31/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

32/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Words seen <5 times in training; (rare

words in the training data)

Cache Favors (Rare Words):
Proper nouns/entities (e.g., "Gore", "Nero") if reused in test.

Specific identifiers (e.g., "31B", "CR").

LM Favors (Rare Words):
Numbers (e.g., "770").
Non-specific content words (e.g., "Pitcher", "consul") if not

locally bursty.

Conclusion: Cache effectively handles rare words if

they become locally bursty in new contexts.

Table 5 : Cache Probability for Rare Training Words

CacheUsefor RareWords fromTrainingSet

33/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

OOV word cache probability p(z | w) vs. test set

frequency

Trend: Higher test set frequency for OOV words often

means higher cache probability.

Top-Right: Frequently reused OOVs (e.g., new proper

nouns) are cached.

Bottom-Left: Infrequent OOVs (e.g., new common

words) generated by LM.

Conclusion: Cache effectively identifies and reuses

bursty OOV words. Figure 16: OOV word avg. cache probability vs.

test set frequency.

CacheUsefor OOVWords

Observations from data suggest the model learns:

Cache is preferentially used for:

Proper Nouns (e.g., "Lesnar", "Gore", "Nero") →

Captures burstiness.

Very Frequent Words Punctuation (e.g., "the", ".", ",").

"Bursty" OOV words if reused (often names）

Language Model (HCLM) is for:

Numbers (e.g., "300", "770", "246") → Tend not to

repeat.

Generic Content Words (e.g., "act", “Sounds", "Pitcher").

Most OOV words, especially if not repeated often.

Key Insight

The model effectively distinguishes: word creation vs. word reuse.

Cache adaptively handles "burstiness" of specific word types.

Analysis Summary

34/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Novel: Hierarchical Character LM + Adaptive Cache (HCLM+Cache) for open-vocabulary LM.

Model creates new words (HCLM) captures ’bursty’ reuse (cache).

New: Multilingual Wikipedia Corpus (MWC) for cross-lingual LM evaluation.

Effective across diverse languages datasets (PTB, WikiText-2, MWC).

Key Contributions (Kawakami et al., 2017)

35/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

HCLM+Cache (LSTMs): Not widely adopted long-term.

Why? Rapid NLP Evolution

Shift: RNNs/LSTMs rightarrow Transformers (2017).

Rise: Large-Scale Pre-training (BERT, GPT).

Adoption: Subword Tokenization.

Adoption Since 2017: The HCLM+Cache Path

36/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

How Large Language Models address these today:

1. OOV Words (Open Vocabulary):
Subword Tokenization (BPE, WordPiece).

Standard in BERT, GPT, etc.

Finite subword vocabulary rightarrow represents any word.

Reduces <unk>, better morphology.

2. Word Reuse Context (Burstiness):
Transformer Architecture Attention:

Self-attention weighs all prior tokens in context.
Implicitly captures burstiness co-occurrence.

Longer Context Windows.

Large-Scale Pre-training (learns complex patterns).

Modern LLMs: Tackling OOV Burstiness

37/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

From a 2025 perspective, the approach had limitations:

Reliance on LSTMs:
Less parallelizable during training compared to Transformers.

Harder to scale to the massive sizes of modern models.

Character-level processing: Can be computationally slow for long sequences.

Assumes pre-segmented words: This is problematic for languages without clear word boundaries (e.g., Chinese,

Japanese, Thai). Subword models handle this more naturally.

Explicit Cache Necessity: An explicit cache is useful for certain LSTMs but may be less critical or need redesign

for strong Transformer models with robust attention-based contextual memory.

Limitations of the 2017 Paper (In Hindsight)

38/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Despite not being the dominant architecture today, the paper offers valuable insights:

Explicit Modeling of Linguistic Phenomena: A reminder that directly addressing known properties (like burstiness,

OOV) can guide model design and yield improvements.

Hybrid Approaches: Cleverly combined fine-grained generation (character-level) with coarser-grained reuse

(word-level cache).

Memory/Cache Concepts : The idea of incorporating a local, dynamic memory or cache continues to inspire

related concepts (e.g., aspects of Retrieval-Augmented Generation (RAG), memory networks).

Value of Multilingual Evaluation: The MWC dataset and cross-lingual results highlighted the importance of

testing beyond English early on.

Inspirations Lasting Value from This Paper

39/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Kazuya Kawakami, Chris Dyer, and Phil Blunsom. 2017. Learning to create and reuse words in open-vocabulary

neural language modeling.

In arXiv preprint arXiv:1704.06986.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017.

Pointer sentinel mixture models.

In Proc. ICLR.

Edouard Grave, Armand Joulin, and Nicolas Usunier. 2017.

Improving neural language models with a continuous cache.

In Proc. ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015.

Neural machine translation by jointly learning to align and translate.

In Proc. ICLR.

40/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

References

References

41/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 1: Graffiti on a wall in Crema, Italy.

Source: The presenter’s photograph.

Figure 2: Collins Dictionary's 2024 word of the year.

Source: Collins Dictionary. Retrieved from

https://www.collinsdictionary.com/woty

Figure 3: The <UNK> token issue.

Source: Generated by Perplexity AI.

https://www.perplexity.ai/search/wei-slidehua-yi-zhang-

cha-tu-t-96JIgx1VSqy_A93uWQWL1g

Figure 4: The problem with <UNK> token.

Source: Generated by Perplexity AI.

Figure 5: An example of a character-level language

model.

Source: ResearchGate. Retrieved from

https://www.researchgate.net/figure/Overview-of-the-

NER-model-to-generate-the-syntactic-code-embedding-

for-LAMNER-The-input_fig3_360078902

Figure 6: The Bustiness problem.

Source: RFI News Screenshot. Retrieved from

https://www.rfi.fr/en/sports/20250520-suryavanshi-helps-

lowly-rajasthan-end-ipl-campaign-with-win-1

Figure 7: Architecture of RNN and LSTM.

Source: GeeksforGeeks. Retrieved from

https://www.geeksforgeeks.org/rnn-vs-lstm-vs-gru-vs-

transformers/

Figure 8: Model Overview.

Source: Generated using Python.

Figure 9: Description of HCLM.

Source: Figure 1 from original paper

Figure 10: The character encoder’s working process.

Source: Generated using Python.

https://www.collinsdictionary.com/woty
https://www.researchgate.net/figure/Overview-of-the-NER-model-to-generate-the-syntactic-code-embedding-for-LAMNER-The-input_fig3_360078902
https://www.researchgate.net/figure/Overview-of-the-NER-model-to-generate-the-syntactic-code-embedding-for-LAMNER-The-input_fig3_360078902
https://www.researchgate.net/figure/Overview-of-the-NER-model-to-generate-the-syntactic-code-embedding-for-LAMNER-The-input_fig3_360078902
https://www.rfi.fr/en/sports/20250520-suryavanshi-helps-lowly-rajasthan-end-ipl-campaign-with-win-1
https://www.rfi.fr/en/sports/20250520-suryavanshi-helps-lowly-rajasthan-end-ipl-campaign-with-win-1
https://www.geeksforgeeks.org/rnn-vs-lstm-vs-gru-vs-transformers/
https://www.geeksforgeeks.org/rnn-vs-lstm-vs-gru-vs-transformers/

References

42/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

Figure 11: The world-level context encoder’s working

process.

Source: Generated using Python.

Figure 12: The character decoder’s working process.

Source: Generated using Python.

Figure 13: The cache mechanism’s working process.

Source: Generated using Python.

Figure 14: The graph of two functions.

Source: Generated by Perplexity AI. Retrieved from

https://www.perplexity.ai/search/hua-chu-tu-zhong-ti-dao-

de-zhe-d6g6M.eJTYK1UH21HUgbdw

Figure 15: Illustration of the datasets.

Source: Generated by Gemini. Retrieved from

https://g.co/gemini/share/98f9a9ebe040

Figure 16: OOV word avg. cache probability vs. test

set frequency.

Source: From the original paper, figure 3.

Table 1: Results on PTB Corpus (bits-per-character).

Source: From the original paper, table 4.

Table 2: Results on WikiText-2 Corpus.

Source: From the original paper, table 5.

Table 3: MWC Performance - HCLM+Cache vs.

Baselines (Test bpc).

Source: From the original paper, table 6.

Table 4: Word Types with High/Low Cache Probability.

Source: From the original paper, table 7.

Table 5: Cache Probability for Rare Training Words.

Source: From the original paper, table 8.

Overleaf Template: "SDQ Presentation Template (2025)"

on Overleaf

(https://www.overleaf.com/latex/templates/sdq-

presentation-template-2025/hhrwthdzdwfs)

https://g.co/gemini/share/98f9a9ebe040
https://www.overleaf.com/latex/templates/sdq-presentation-template-2025/hhrwthdzdwfs
https://www.overleaf.com/latex/templates/sdq-presentation-template-2025/hhrwthdzdwfs

Thank You! Questions?

Q&A

43/42 May 21, 2025 Zhaokun Wang: Learning to Create and Reuse Words Uni Heidelberg

Introduction Method Experiments Results Analysis Conclusion

	幻灯片 1
	幻灯片 2: Content
	幻灯片 3: The Dynamic World of Words What is the "brat summer"?
	幻灯片 4: The Dynamic World of Words Collins Dictionary's 2024 word of the year
	幻灯片 5: The Dynamic World of Words
	幻灯片 6: The Problem with <UNK>
	幻灯片 7: A New Direction: Thinking in Characters!
	幻灯片 8: The Burstiness Problem
	幻灯片 9: Our Focus: Kawakami, Dyer, Blunsom (2017)
	幻灯片 10: Seminar Roadmap
	幻灯片 11: Key Tech of the Era: LSTMs (Quick Refresher)
	幻灯片 12: Model Overview
	幻灯片 13: Model Overview
	幻灯片 14: Model Overview How the model predicts the next word wt
	幻灯片 15: Path 1: Generating from Scratch (HCLM)
	幻灯片 16: Path 1: Generating from Scratch (HCLM)
	幻灯片 17: Path 1: Generating from Scratch (HCLM)
	幻灯片 18: Path 2: Reusing from Memory (Cache)
	幻灯片 19: Path 2: Reusing from Memory (Cache)
	幻灯片 20: Path 2: Reusing from Memory (Cache): Pointer Network
	幻灯片 21: The Smart Switch: Combining Both Paths How the model decides to generate or reuse
	幻灯片 22: Mixture of LM and Cache: A Question on λt
	幻灯片 23: Datasets
	幻灯片 24: Training Objective
	幻灯片 25: Setting Up the Experiment (2017) Key configurations and how success was measured
	幻灯片 26: A 2025 Perspective on Datasets & Experiments
	幻灯片 27: Results: Penn Tree Bank (PTB)
	幻灯片 28: Results: WikiText-2 (Realistic Open-Vocabulary)
	幻灯片 29: Results: Multilingual Wikipedia Corpus (MWC)
	幻灯片 30: How is the Cache Actually Used?
	幻灯片 31: Cache Use for General Words (WikiText-2 Test)
	幻灯片 32
	幻灯片 33
	幻灯片 34: Analysis Summary
	幻灯片 35: Key Contributions (Kawakami et al., 2017)
	幻灯片 36: Adoption Since 2017: The HCLM+Cache Path
	幻灯片 37: Modern LLMs: Tackling OOV Burstiness
	幻灯片 38: Limitations of the 2017 Paper (In Hindsight)
	幻灯片 39: Inspirations Lasting Value from This Paper
	幻灯片 40: References
	幻灯片 41: References
	幻灯片 42: References
	幻灯片 43: Q&A

