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The Dynamic World of Words

What is the "brat summer”?

Figure 1: Graffiti on a wall in Crema, Italy
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The Dynamic World of Words

brat

(brzt) adjective characterized by a confident,
independent, and hedonistic attitude

#CollinsWOTY

LOOKSMAXXING

looksmaxxing

('lsks macksig) noun

“attempting to maximize the

¥ attractiveness of one’s

physical appearance

" #CollinsWOTY

brainrot

B I N R I (‘'bremn rot) noun
an inability to think

clearly caused by

excessive consumption of

low-quality online content

rawdogging

('ra: dogim) noun the act
of undertaking an
activity without
preparation, support, or
equipment

#CollinsWOTY

Figure 2: Collins Dictionary's 2024 word of the year
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The Dynamic World of Words

m The Dynamic World: New words, slang, names — language evolves

daily! (Think social media, tech). EVOLVING FIXED
m The Machine Challenge: Natural language is dynamic. How do Al LANGUAGE VOCABULARY

models keep up?
m The Old Problem (Pre-2017):
m Many models: Fixed vocabulary. |
m New/rare word? — Placeholder: <unk> (unknown).
m Model effectively says: | don’t know this word!

Figure 3: The <UNK> token issue
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The Problem with <UNK>

m Lost Information:
m "Gene editing with CRISPR"— "...with <UNK>."Key details vanish!

m Fantasy names ("Daenerys,Hogwarts") become <UNK> — Story breaks.

m Impacted Applications:
m Machine Translation: How to translate a new term if it's <uNng>?
m Speech Recognition: What about new slang or brand names?
m Autocorrection: Can’t suggest fixes for words it’s never seen.

Introduction
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Gene editing with CRISPR
... With -<UNK>

% -0

Machine Speech -
Translation Recogintion Autocorrection

Figure 4: The problem with <UNK> token.
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A New Direction: Thinking in Characters!

® The Big Idea (Mid-2010s): What if LMs learned from character sequences, not just whole words?

B Why Exciting?
® Open Vocabulary: Can form any word, even unseen ones, by learning spelling rules (orthography).

B Bye-Bye <UNK> (Mostly): Naturally handles new words by building them character-by-character.

Next
Probability character
Distribution
Softmax Softmax
Layer

FOH N e

e iHiHiFi%iHﬁHﬁHﬁHﬁ%T e

Stats
ae Embedding
E10
Layer

p u b i c B 0 [}

Figure 5: An example of a character-level language model
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The Burstiness Problem

® The Lingering Issue:
B Solved "can | form this word?"
B But, early versions didn’t efficiently "remember"to reuse newly formed complex words (the "burstiness"problem).

Suryavanshi 07 ~ W X
— Rajasthan 0/8 -~ W X
Suryavanshi helps lowly Rajasthan end IPL IPL 0/6 A v %

campaign with win

New Delhi (AFP) - Teenage sensation Vaibhav Suryavanshi hit a half-century as Rajasthan Royals ended their IPL
season with a consolation six-wicket win over Chennai Super Kings on Tuesday.

Figure 6: The Bustiness problem.
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Our Focus: Kawakami, Dyer, Blunsom (2017)

m Core ldea (2017): An elegant solution combining:
m Character-level generation.
m A smart "memory"“(cache) system.

m Model Intelligently Decides:
m Generate from scratch (for new/varied words)?
m OR "Copy"from cache (for recent, "bursty"words)?

m Imagine: Writing a report & coining a new term.
m 1st time: Type carefully (char-level generation).
m Next few times: Copy-paste / quick recall (caching!).

Introduction
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Seminar Roadmap

m In Today’s Seminar, We’ll Explore:
m Their Hierarchical LSTM + word cache architecture.
m How the model learns to create AND reuse words.
m Key experiments and results showcasing its strengths.
m The paper’s impact on language model evolution.
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Key Tech of the Era: LSTMs (Quick Refresher)

m Why LSTMs? (~2015-2017 was peak LSTM!):
m Basic RNNs: Try to "remember"past to inform current predictions.
m Problem: Simple RNNs struggled with "long-term memory"
m LSTMs (Long Short-Term Memory): Advanced RNNs with "gates"(input, forget, output) to control information flow.

® |In 2017, LSTMs were NLP’s go-to for sequence modeling:
B Excelled at capturing longer dependencies in text.

RNN LSTM
ht ht
Forget gat:
g , ! I
> X c ¥ >
_____ tanh
( T
tanh E E:_r/_:_f E ﬁ_
| oo tamh | o |
Xt Xt Input gat Output gaty

Figure 7: Architecture of RNN and LSTM
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Model Overview

Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

m Character-level generation for novel words
m Cache mechanism for reuse of prior words
m Built with 3 LSTMs + a memory module

Char-level
LSTM Decoder

}r \%A

Char-level __Encode . Sequence Word-level — Context . ctx ~_Update Cache | Pointer Output
LSTM Encoder Word¥ector »  |STM Context L r (Pointer/Memory) > Char Sequence
\\\ Gating_wp~
MLP
()

Figure 8: Model Overview
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Model Overview

Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

m Character-level generation for novel words
m Cache mechanism for reuse of prior words
m Built with 3 LSTMs + a memory module

p(Pokémon) = A;py,,(Pokémon) + (1 — Ay)pp-(Pokémon)

Ppir(Pokémon) A\ Pim(Pokémon)

wy

o k & m o n <s>
Memory
Component
sof P o k & m o n
— \ Character Decoder
Character J Word-level etz
Encoder Context +
Encoder
hF?i
1
Pokémon<as> Company <ss - ( f o rmer |l y «<s>

Wy
The Pokémon Company International (formerly Pokémon USA Inc )

Figure 9: Descri.ption of HCLM |
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Model Overview

Hierarchical Character-Level Language Model with Cache (HCLM + Cache)

® 1. Generating from Scratch: Creating the word character by character, like spelling it out.
B 2. Reusing from Memory: Picking a word it has seen recently. (Handled by the Cache part)

p(Pokémon) = A;py,,(Pokémon) + (1 — Ay)pp-(Pokémon)

Ppir(Pokémon) A\ Pim(Pokémon)

wy

Memory
Component

Character
Encoder

Word-level ot
Context n
Encoder

Pokémon<as> Company <ss - ( f o rmer I y «<s

The Pokémon Company International (formerly Pokémon USA Inc )

Figure 9: Descri.ptioh of HCLM B
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Path 1: Generating from Scratch (HCLM)

m HCLM Role: Generates words from scratch, character-by-character.

m Two Levels of Hierarchy:
m Characters — Word Vector:

B | STMen reads previous word (e.g., w¢-1) char-by-char.
B Output: Single vector h{™S representing w;-; (meaning from chars!).

P o k & m o n <fs>

LSTM_enc
it ’ =1 __ o . .
Sl
LSTM_enc
t=2
. / (t=2) \\h\L
LSTM_enc
k ‘LSTM_enc Pokémonadss||Company <s> | ( f o rmer |l y <s>
/ (t=4) why
é R LSTM enc
t=5
" / ( ) \\\h\i
LSTM_enc
|,
o TS
LSTM Word LSTM_ctx
] (t=7;enc Ve:tror e
Figure 10: The character encoder’s working process
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Path 1: Generating from Scratch (HCLM)

m HCLM Role: Generates words from scratch, character-by-character.

m Two Levels of Hierarchy:
® Word Vectors — Sentence Context:
B LSTMcy processes sequence of word vectors (h§", ..., h¢9).
m Output: Context vector hf* summarizing sentence so far.

Word Vector » LSTM_ ctx —
(t=1) (t=1)
~h
S
LSTM_ctx
/' (t=2) L Pokémon<s Company < - { f o rmer | y <
Word Vector el T
t=2
(=2 LSTM_ctx
(t=3)
Word Vector sl Mo b
(t=3) \\A
LSTM_ctx Context LSTM dec
— > _> —
Word Vector —% (t=4) Vector

(t=4)

Figure 11: The world-level context encoder’s working process
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Path 1: Generating from Scratch (HCLM)

m HCLM Role: Generates words from scratch, character-by-character.

m Two Levels of Hierarchy:
m Generation — Next Word:

B LSTMgec Uses hf as starting point.
B Generates current word w; one character at a time.

Output
Char Sequence

LSTM_dec i
oy SRl
LSTM_dec
h (t=6)
L g e
LSTM dec ~ O
hy &9 —
LSTM dec ~ )
IB.% 4 (=4) T
LSTM_dec ~ <
by (t=3) T
LSTM dec ~ £
(t=2)
T 5
LSTM ctx Context LSTM d
. B e R
Figure 12: The character decoder’s working process
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Path 2: Reusing from Memory (Cache)

m Cache Role: Smart short-term memory for
recent words.

Word Vectort=1

Pptr(Pokémon) e pim(Pokémon) . '-,_update/Aﬂenﬁon
ur P o k é& m o n </s> .
cache H ). W Word Vector,_,, |
ey crrrmey ,L‘deate/Attention.’ :
m How It Works: i = -
m Storing: Generated word (e.g., "Pokémon") + HHHH HHHHH, - HordVeetoicg . upgatoienion & 4

> ( formerly <s> R U
wy—)

Cache
Update/Attention - (Pointer/Memory)

its generation state (hy) — added to cache.
m Limited Size (K items): Least Recently Used

. . Word Vector, _ - i 4
(LRU) item removed if full. t=4 :
Read - ST !
ctx . . Write/Updat
thxt ,,,tgrlh,(v,vqh, = {t?q), B rt :;7VT§%ﬂh(W uk i+ i t) nte p/a/ ?, /
gl '
it

Figure 13: The cache mechanism’s working process
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Path 2: Reusing from Memory (Cache)

m Cache Role: Smart short-term memory for
recent words.

Word Vectort=1

m Smart Retrieval ("Pointer"via Attention):

m Current context hy — forms "query"r;. e

m Query r; compared to keys (stored states) in
cache.

m Attention: Calculates relevance scores for
cached items.

m Softmax over scores — probability of copying
each cached word.

Introduction
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Figure 13: The cache mechanism’s working process
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Path 2: Reusing from Memory (Cache): Pointer Network
over Cache

Given context vector h;: Word Vector
] Compute query Vector Pptr(Pokémon) b pr,,,(ch:ko’mm:)n") “ "v_lflp.dvate/Attention
Ca:: . *D"D"D"G"U"D"H Word Vector,_,, e ‘
.rt f— tanh( thf + bq) Q} TEeremes vL‘pr!ate/Attentio‘n."
m For each cache key k;, compute: e %HHM EEEECEEER IS Word Vet pnerion & 4

Pokémon<s> Company<s - (formerly s> R U
we-1 Cache

Update/Attention - (Pointer/Memory)

Ut =v' tanh( Wyki + i)

Word Vector,_, A
m Pointer probability: e
N T i PG, uk' .:'r ) -
pptr(wf|ht} = E SDf’[man(Uj_t) t ; e el .
:':m;:w; !
Figure 13: The cache mechanism’s working process
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The Smart Switch: Combining Both Paths

The model doesn'’t just guess; it intelligently blends the two

pathS: p(Pokémon) = A\¢py, (Pokémon) + (1 — Ay)ppir(Pokémon)
m The final probability is a mix: Ppir(Pokémon) Ay pin(Pokémon)
p Wt :At m Wt _‘}_ 1 _At pt Wt P o k é m o n <s>
(Wr) = At Pim(W2) +( ) Porr(Wr)
Generate Reuse | HHHHH

(p(w: | w-¢) shorthand for p(w;) above)
m The Gatekeeper (\):
m A small neural network (MLP) looks at the current context (h;) H HHM H H H H H ﬂ H u H
m It outputs a value \; (between 0 and 1). mwh LU '
m If \; = 1: Favors generating the word (HCLM). wi
m If \; = 0: Favors reusing a word (Cache).

'
——
R
Y
—
=

*
The gate A; (center) decides between HCLM (right) and Cache (left).

Figure 9: Description of HCLM
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Mixture of LM and Cache: A Question on A;

Mixing coefficient A; in the paper: The paper defines A;

as: 1‘ g B e g
Yt = MLP(ht) - ‘l
1 .. |
A= or— - \»\¥,
1 - e Yt § 0.0 —
E N
m Itis computed using an MLP based on the context h;. s \.\
- . y . - 1 50
| Qge_stlon. The paper’s formulation for Ay is —=p. Is
this intended?
m The standard logistic sigmoid is o(x) = L.

m The paper’s version could lead to values outside [0, 1] or
division by zero if y; = 0.

gamma_t

Figure 14: The graph of two functions
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Datasets

m Penn Treebank (PTB):
m Preprocessed version with fixed vocabulary

m No OOVs — serves as sanity check @) =] @> (©)
m WikiText-2: 6%% @@ é{%‘&

m Open-vocabulary corpus from Wikipedia =)
m Higher OOV rate, more realistic S A >

m Multilingual Wikipedia Corpus (MWC): Penn Treebank WikiText-2 Multilingual
m 7 languages: EN, FR, DE, ES, RU, CS, FI Wikipedia
m Comparable articles across languages Corpus

m Diverse morphological structures

Figure 15: lllustration of the datasets
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Training Objective

Goal: Maximize log likelihood of training data words. (Model should assign high probability to real text). Loss function:

L=- Z log p(w;| W)
t

All parameters trained jointly:
m Character embeddings
m LSTM weights
m Attention (pointer) weights
m Mixture coefficient MLP

No supervision for when to copy!

Introduction
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Setting Up the Experiment (2017)

Model Configuration: Evaluation Metric: Bits-Per-Character (bpc)
m LSTM hidden units: 600 hidden units m What is it? Measures how surprised the model is by the
m Character embeddings: 600 dims next character it sees.

m Think of it like a guessing game:

m Cache size: 100 word slots : ) _
m If the model is very certain about the next character it uses

m Comparable to other strong models of the time. fewer "bits"to encode it.
m Ifit’s very unsure, it uses more "bits".
Training Details: m Lower bpc is better! Indicates a model that
m Optimizer: Adam understands the language structure well.

m Standard techniques: Learning rate schedule, gradient
clipping, dropout.
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A 2025 Perspective on Datasets & Experiments

Datasets: Ease of Replication & Advancement:
m 2017: PTB, WikiText-2, MWC m Compute Power:

e Ml s m 2017: Titan Xp (12 TFLOPs FP32)
Slze: M|II|on§ 0 IOYV Teljs of Millions tokens m 2025: RTX 50xx (19.18-318 + TFLOPs FP32 + Tensor Core)
m 2025: The Pile, SlimPajama, CC-Net

m Tools & Libraries:

Size: Trillions of tokens m 2017: Early PyTorch / TF1.x
Diverse: Code, multilingual, instruction-tuned m 2025: Mature PyTorch/TF2/JAX, Hugging Face, AMP,
Long-context benchmarks advanced optimizers
Introduction
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Resuits: Penn Tree Bank (PTB)

Table 1. Results on PTB Corpus (bits-per-character).

Method Dev Test
CW-RNN Koutnik et al. (2014) - 146
HF-MRNN Mikolov et al. (2012) - 141
MI-RNN Wu et al. (2016) - 139
ME n-gram Mikolov et al. (2012} - 137
RBN Cooijmans et al. (2017) 1281 1.32
Recurrent Dropout Semeniuta et al. (2016) 1.338 1.301
Zoneout Krueger et al. (2017) 1.362 1.297
HM-LSTM Chung et al. (2017) - 127
HyperNetwork Ha et al. (2017) 1.296 1.265
LayerNorm HyperNetwork Ha et al. (2017) 1.281 1.250
2-LayerNorm HyperLSTM Ha et al. (2017)* - 1.219
2-Layer with New Cell Zoph and Le (2016)* - 1214
LSTM (Our Implementation) 1.369 1.331
HCLM 1.308 1.276
HCLM with Cache 1.266 1.247

Key Insights Findings for PTB

m Cache adds boost even on non-ideal dataset
m Model competitive without complex tricks

m Suggests benefit even for frequent word repetition
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Results: WikiText-2 (Realistic Open-Vocabulary)

Table 2: Results on WikiText-2 Corpus .

Method Dev Test
LSTM 1.758 1.803
HCLM 1.625 1.670

HCLM with Cache 1.480 1.500

Key Insights Findings for WikiText-2

m Cache improved performance by 10.2%
over HCLM on challenging dataset

m Character-level model with cache rivals word-level models

Introduction
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Resuits: Multilingual Wikipedia Corpus (MWC)

Table 3: MWC Performance - HCLM+Cache vs. Baselines (Test bpc)

EN FR DE ES CS FI RU
dev test dev test dev test dev test dev test dev test dev test
LSTM 1./93 1.736 1.669 1621 1.780 1.754 1.733 1667 2.191 2.155 1943 1913 1942 1932
HCLM 1683 1.622 1553 1.508 1666 1.641 1617 1.555 2.070 2.035 1.832 1.796 1.832 1.810
S:;h: with 1.591 1.538 1.499 1.467 1.605 1.588 1.548 1.498 2.010 1.984 1.754 1.711 1.777 1.761

Key Insights Findings for MWC

m Significant improvement with cache

m Model effectively reuses word forms in varied linguistic structures.
m Architecture benefits (creating and reusing words) not language-specific.
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How is the Cache Actually Used?

® The Big Question: Is the cache just a dumb buffer, or is it being used intelligently? The authors investigated!p(z | w ):
Average cache probability for word w after its first use.

®m They looked at p(zlw) — the probability that a given word w was generated by copying from the cache (z=1) versus
being spelled out by the HCLM (z=0).

Introduction
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Cache Use for General Words (WikiText-2 Test)

Table 4: Word Types with High/Low Cache Probability

Word p(z]w) ] | Word p(z|w) T
. 0.997 | 300 0.000
s = . L 0,991 t 0.001
Examining p(z | w): avg. posterior cache o Do
= NY 0.985 | 770 0.003
probability (after 1st use) o oors | put oo
C h F Bintulu 0.976 | sounds 0.004
m Cache ravors. Nerva 0.976 | instead 0.005
m Punctuation frequent words (e.g., ".", "the"). ’ 0.974 1 440 0.005
" o o c UB 0.972 | similar 0.006
m Proper nouns (e.g., "Lesnar", "NY") due to burstiness. Nero 0067 | 27 0,009
m LM Favors: Osbert 0.967 | help 0.009
m Numbers (e.g., "300", "770"), which rarely repeat identically. Kershaw 0962 | few 0.010
n non " Manila 0.962 | 110 0.010
m Common content words (e.g., "act", "however"). Boulter 095 | Jersey 0011
m Conclusion: Cache handles repetition; LM handles Stevens - 0.256 | even non
I L Rifenburg 0952 |y 0.012
flexibility and non-repetitive words. Arjona 0.952 | though 0,012
of 0.945 | becoming 0.013
31B 0.941 | An 0.013
Olympics 0.941 | unable 0.014
Introduction
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Cache Use for Rare Words from Training Set

Table 5 : Cache Probability for Rare Training Words

Word p(z|w) ] | Word p(z|w) 1
Gore 0977 | 770 0.003
. . — Nero 0.967 | 246 0.037
Words seen <5 times in training; (rare Osbert 0967 | Lo 0.074
2 =P Kershaw 0.962 | Pitcher 0.142
words in the training data) 218 Tonr | poete i
Kirby 0.935 | popes 0.143
m Cache Favors (Rare Words): CR 0.926 | Yap 0.143
m Proper nouns/entities (e.g., "Gore", "Nero") if reused in test. SM 0.924 | Piso 0.143
m Specific identifiers (e.g., "31B", "CR"). L“l""i‘:)a';‘-‘ g:;z ‘:’“5“' . 812
ockbuster . eavyweig .

u LM Favors (Rare WordS): Superfamily 0.900 | cheeks 0.154
m Numbers (e.g., "770"). Amos 0.900 | loser 0.164
m Non-specific content words (e.g., "Pitcher”, "consul”) if not Steiner 0.897 | amphibian 0.167
Iocally bursty. Bacon 0.893 | squads 0.167
. . . filters 0.889 | los 0.167
m Conclusion: Cache effectively handles rare words if Lim 0.889 | Keenan 0.167
they become locally bursty in new contexts. Selfridge V875 | seulptors o6t
filter 0.875 | Gen. 0.167
Lockport 0.867 | Kipling 0.167
Germaniawerft 0.857 | Tabasco 0.167
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Cache Use for OOV Words

12

Gor'e

OOV word cache probability p(z | w) vs. test set ol Bacon \
4 " } dlnféb\
frequency 08 | replicas / & & . Ng!ton@%
® . - LN
m Trend: Higher test set frequency for OOV words often T o6} e efghe & ’
means higher cache probability. R S !"a;.':- :
m Top-Right: Frequently reused OOVs (e.g., new proper i :‘
| madblock ®s
nouns) are cached. ol e
m Bottom-Left: Infrequent OOVs (e.g., new common
-0.2 ' - L L L
words) generated by LM. -20 0 20 a0 60 80 100
) ) ) e Frequency in Test set
m Conclusion: Cache effectively identifies and reuses
bursty OOV words. Figure 16: OOV word avg. cache probability vs.
test set frequency.
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Analysis Summary

Observations from data suggest the model learns:

Cache is pl’efel’entially used for: Language \YileYe =) (HCLM) is for:

m Proper Nouns (e.g., "Lesnar", "Gore", "Nero") — m Numbers (e.g., "300", "770", "246") — Tend not to
Captures burstiness. repeat.

m Very Frequent Words Punctuation (e.g., "the", ".",","). m Generic Content Words (e.g., "act”, “Sounds", "Pitcher").

m "Bursty" OOV words if reused (often names) m Most OOV words, especially if not repeated often.

Key Insight

m The model effectively distinguishes: word creation vs. word reuse.
m Cache adaptively handles "burstiness" of specific word types.
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Key Contributions (Kawakami et al., 2017)

m Novel: Hierarchical Character LM + Adaptive Cache (HCLM+Cache) for open-vocabulary LM.
m Model creates new words (HCLM) captures ’bursty’ reuse (cache).

m New: Multilingual Wikipedia Corpus (MWC) for cross-lingual LM evaluation.

m Effective across diverse languages datasets (PTB, WikiText-2, MWC).
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Adoption Since 2017: The HCLM+Cache Path

m HCLM+Cache (LSTMs): Not widely adopted long-term.

Why? Rapid NLP Evolution

m Shift: RNNs/LSTMs rightarrow Transformers (2017).
m Rise: Large-Scale Pre-training (BERT, GPT).

m Adoption: Subword Tokenization.
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Modemn LLMs: Tackling OOV Burstiness

How Large Language Models address these today:

1. OOV Words (Open Vocabulary):
m Subword Tokenization (BPE, WordPiece).
m Standard in BERT, GPT, etc.

m Finite subword vocabulary rightarrow represents any word.

m Reduces <unk>, better morphology.
2. Word Reuse Context (Burstiness):
m Transformer Architecture Attention:

B Self-attention weighs all prior tokens in context.
B Implicitly captures burstiness co-occurrence.

m Longer Context Windows.
m Large-Scale Pre-training (learns complex patterns).
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Limitations of the 2017 Paper (In Hindsight)

From a 2025 perspective, the approach had limitations:

m Reliance on LSTMs:
m Less parallelizable during training compared to Transformers.
m Harder to scale to the massive sizes of modern models.

m Character-level processing: Can be computationally slow for long sequences.

m Assumes pre-segmented words: This is problematic for languages without clear word boundaries (e.g., Chinese,
Japanese, Thai). Subword models handle this more naturally.

m Explicit Cache Necessity: An explicit cache is useful for certain LSTMs but may be less critical or need redesign
for strong Transformer models with robust attention-based contextual memory.
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Inspirations Lasting Value from This Paper

Despite not being the dominant architecture today, the paper offers valuable insights:

m Explicit Modeling of Linguistic Phenomena: A reminder that directly addressing known properties (like burstiness,
OOV) can guide model design and yield improvements.

m Hybrid Approaches: Cleverly combined fine-grained generation (character-level) with coarser-grained reuse
(word-level cache).

m Memory/Cache Concepts : The idea of incorporating a local, dynamic memory or cache continues to inspire
related concepts (e.g., aspects of Retrieval-Augmented Generation (RAG), memory networks).

m Value of Multilingual Evaluation: The MWC dataset and cross-lingual results highlighted the importance of
testing beyond English early on.
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Figure 1: Graffiti on a wall in Crema, Italy.

Source: The presenter’'s photograph.

Figure 2: Collins Dictionary's 2024 word of the year.
Source: Collins Dictionary. Retrieved from
https://www.collinsdictionary.com/woty

Figure 3: The <UNK> token issue.

Source: Generated by Perplexity Al.

https://www.perplexity.ai/search/wei-slidehua-yi-zhang-
cha-tu-t-96JIgx1VSqy A93uWQWL1g

Figure 4: The problem with &It;UNK> token.

Source: Generated by Perplexity Al.

Figure 5: An example of a character-level language
model.

Source: ResearchGate. Retrieved from
https://www.researchgate.net/figure/Overview-of-the-
NER-model-to-generate-the-syntactic-code-embedding-

Figure 6: The Bustiness problem.
Source: RFI News Screenshot. Retrieved from
https://www.rfi.fr/en/sports/20250520-suryavanshi-helps-

lowly-rajasthan-end-ipl-campaign-with-win-1

for-LAMNER-The-input fig3 360078902

Figure 7: Architecture of RNN and LSTM.

Source: GeeksforGeeks. Retrieved from
https://www.geeksforgeeks.org/rnn-vs-Istm-vs-gru-vs-
transformers/

Figure 8: Model Overview.

Source: Generated using Python.

Figure 9: Description of HCLM.

Source: Figure 1 from original paper

Figure 10: The character encoder’s working process.
Source: Generated using Python.
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Figure 11: The world-level context encoder’s working
process.

Source: Generated using Python.

Figure 12: The character decoder’s working process.
Source: Generated using Python.

Figure 13: The cache mechanism’s working process.
Source: Generated using Python.

Figure 14: The graph of two functions.

Source: Generated by Perplexity Al. Retrieved from
https://www.perplexity.ai/search/hua-chu-tu-zhong-ti-dao-
de-zhe-d6g6M.eJTYK1UH21HUgbdw

Figure 15: lllustration of the datasets.

Source: Generated by Gemini. Retrieved from
https://g.co/gemini/share/98f9a9ebe040

Figure 16: OOV word avg. cache probability vs. test
set frequency.

Source: From the original paper, figure 3.

Table 1: Results on PTB Corpus (bits-per-character).
Source: From the original paper, table 4.

Table 2: Results on WikiText-2 Corpus.

Source: From the original paper, table 5.

Table 3: MWC Performance - HCLM+Cache vs.
Baselines (Test bpc).

Source: From the original paper, table 6.

Table 4: Word Types with High/Low Cache Probability
Source: From the original paper, table 7.

Table 5: Cache Probability for Rare Training Words.
Source: From the original paper, table 8.

Overleaf Template: "SDQ Presentation Template (2025)"
on Overleaf
(https://www.overleaf.com/latex/templates/sdg-
presentation-template-2025/hhrwthdzdwfs)
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Q&A

Thank You! Questions?
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