LLM.int8(): 8-bit Matrix
Multiplication for Transformers at

Scale

Presenter: Zhaokun Wang | June 11, 2025

Content

1. Background

2. Method

3. Experiments and Results
4. Outlier Analysis

5. Conclusion

LLMs are Powerful but Too Large

La rge La ng uage MOde|S - sorted by billion parameters

m LLMs like GPT-3, PaLM, and OPT have revolutionized 540B 176B 100B | 208 11
NLP: a

m Zero-shot reasoning
m Translation
m Creative writing

m But at high costs:

m Hundreds of billions of parameters -
m Massive GPU memory and compute BLOOM i @

PaLM

GPT-2

O

Figure 1: lllustration of why efficient inference matters.

Background
@00000000

3/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Our Goal: Democratizing LLMs with Quantization

The Core Question:

How can we run these giant models on commodity hardware?

The Key ldea: Quantization

A technique to dramatically shrink models by converting their parameters from a high-precision, large-footprint format to
a low-precision, small-footprint one.

FP32 — INTS8

Background
O®@0000000

4/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Numerical Representation Basics

m LLMs parameters typically use floating-point (FP32)
representation:

m FP32 consists of:
B Sign bit
B Exponent
B Mantissa (fraction)

Background
00@000000

5/39 June 11,2025 Zhaokun Wang: LLM.int8()

Float 16-bit (FP16)

(Sign Exponent Signific?nd / Mantissa

1 bit) (5 bits) 10 bits)
90000EN0000008000
S A S
exp = 2= 16 fraction=2" + 2 + 27 = 5703125

5-1

bias=2 1=2 -1=15
exp -bias=16-15="1
0 1

0
1 x 2 X (2 +.5703125) = EREIPH

Figure 2: Floating-point representation basics.

Heidelberg University

Numerical Representation Basics

) precision
_3. 4 e38 tWE)dnSet%nthegkr)iﬁéwveaeI%es) 3 4 e38
FP32 min .-. | max
i 2 1 saéme
[| LLMS parameters typlca”y use ﬂoatlng'p0|nt (FP32) low distance = I igh precision dynamgc range
representation: BF16 min : oy
m FP32 consists of:
- Slgn blt high distafl_c_:_e___=__l_(_)_\{v precision
B Exponent FP16 minl o—o—| IImax
B Mantissa (fraction) 2 1

m Higher bit-width = greater precision & dynamic range but
increased memory use: ‘.

B FP32 provides high precision and dynamic range. INT8 min | | Imax

B FP16 reduces memory by half at the cost of precision.

-65504 65504

dynamic range
(interval of representable numbers)

Figure 3: Floating-point representation basics.

Background
000@00000

6/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Introduction to Quantization

m Quantization reduces precision of model parameters from FP32 to lower bit-width representations:
m FP32 — INT8 (only 8 bits, 256 discrete values)
m Benefits:

m Reduces memory, bandwidth, latency, and compute.
m Small precision loss typically occurs but is minimized by careful methods.

Original Image “Quantized” Image

original

A/weight

higher granularity

lower granularity [] [] |§| O |§| O@ O |§| L] %D 00O

quantized
weight

Figure 4: Quantization process illustration. Figure 5: Distribution comparison before and after quantization.

Background
0000@0000

7/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

How It Works: From Floating Points to Integers

FP32 (Floating Point)

m High precision & dynamic range.
m Composed of sign, exponent, and mantissa.
m Large Memory Footprint.

INT8 (Integer)

m Represents only 256 discrete values.
m Requires mapping via Scale and Zero-Point.
= Small Memory Footprint.

Background
00000@000

8/39 June 11,2025 Zhaokun Wang: LLM.int8()

Sign Exponent Significand / Mantissa
(1bit) (8 bits) (23 bits)

=A0100000060100006800680000000800600

-3.46% 3.46%8
1 0 31415927410125732 |
min {)

max
! 1

A’
inl a4 |

| max
3

-127 0 127

(signed) INT8 @ 0000000

(1 bit) (7 bits)

Figure 6: Quantization process details.

Heidelberg University

Absmax Quantization

This is the simplest method, scaling values symmetrically around zero.

highest absolute
value (o)
I

How it Works

1. Find the maximum absolute value ().
2. Compute scale: s = o/127. |
3. Quantize: g = round(x/s). o T p—

min |_._.—“‘—.-0—+max

—
o
o

195 0 308 547

o—9
3
o]
<

-7.59 -4.57

Simple and fast.
127 . 1

Very sensitive to outliers. A single large value degrades y
DR -
INT8 can take

|

precision for all others.
O0inFP32 =0inINT8

Figure 7: lllustration of absmax quantization.

Background
000000e00

9/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Zeropoint Quantization

This method shifts the range to better utilize the 256 available integer values.

How it Works

1. Find the min and max values.
2. Compute scale: s = (max — min)/255.

3. Compute zero_point to map the original zero
correctly.

More efficient for asymmetric data (e.g., after ReLU).
Computationally more expensive.

Background
0000000e0

10/39 June 11,2025 Zhaokun Wang: LLM.int8()

lowest \.ralue B highest vaiue

ool o Lo Tel
-7.59

-4.57 -1.95 0 3.08 547

mine:) o—e o—eo

Ty -

min 8—e—e- oto0—o ® max

128 :

HHEHEE

0in FP32! ' 0inINT8

Figure 8: lllustration of zeropoint quantization.

Heidelberg University

Why Standard Quantization Fails for Large Models

As models exceed ~6 billion parameters, a new problem emerges.

The Problem: Emergence of Strong Ouitliers

A tiny fraction of feature dimensions (< 0.1%) have values that are orders of magnitude larger than all others. These

are not noise; they are critical for model performance.

The Consequence: Standard quantization is completely

thrown off by these outliers. To accommodate them, the
‘scale‘ becomes huge, forcing all normal values to be
quantized to near-zero, destroying model accuracy.

Background
00000000e

11/39 June 11,2025 Zhaokun Wang: LLM.int8()

-.59 57
/f\ 25|6
min I |

@ Mmax
| T ?

w

outlier

min |

o é max
6 |
-127 127

1

outlier

Figure 9: A few feature dimensions have extreme magnitudes.

Heidelberg University

Introducing LLM.int8(): A Hybrid, Two-Part Solution

Our approach discards the "one-size-fits-all" strategy. LLM.int8() is a hybrid method designed specifically for the outlier
phenomenon in large Transformers.

LLM.int8()

Innovation 1: Vector-wise Quantization

Instead of one scale for the whole tensor, use fine-grained
scales. This localizes the impact of outliers.

Innovation 2: Mixed-Precision Decomposition

Don’t quantize the extreme outliers at all. Process them in
high precision, and everything else in low precision.

Figure 10: LLM.int8() combines two key ideas to preserve accuracy.

Method
@0000

12/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Part 1: Vector-wise Quantization

The Idea
Global scaling is too coarse. An outlier in one column shouldn’t ruin the precision for all other columns.
The Technique:
= In a matrix multiplication, we calculate a separate ‘scale’ LLM.int8() ~ fiteiitdlisltl oo
factor for each column of the weight matrix and each X e, AT ous @G o,
) . T 20 W (127/Cw) = W, 127127 F16
row of the input matrix. jazch () it ot
2 [as[111 w X, W= out_
The Benefit: Xk I S

16-bit Decomposition

m Qutlier effects are contained. An outlier in one vector
only affects the scale for that specific vector, preserving

(1) Decompose outliers (2) FP16 Matmul

n XF16 \NF16= OUtHe [Out
the precision of all other data. 0 el vaues "

Figure 11: A separate scale for each vector localizes quantization errors.

Method
0O@000

13/39 June 11,2025 Zhaokun Wang: LLM.int8()

Heidelberg University

Part 2: Mixed-Precision Decomposition

The Idea

For the most extreme outliers, even fine-grained quantization is not enough. The solution is to not quantize them at all.

The Technique:
1. Detect: Identify the few dimensions that contain systematic ~ LLM.Int8() gttt
outliers. e e L
2. Decompose: Split the matrix multiplication: . v
m The vast majority (99.9%) is multiplied using efficient INT8. a:: & S

(1) Decompose outliers (2) FP16 Matmul

m The tiny fraction of outlier dimensions (0.1%) are multiplied in full e 16.bit Decompositon
FP16 precision.

- g 2 F16 FIG_ F16 Ou FP16
3. Combine: The results are added together. e e B BH t

Figure 12: Isolating outliers in FP16 preserves their critical
information.

Method
00@00

14/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

The Complete Picture: How LLM.int8() Works

LLM.int8() seamlessly integrates these two techniques to quantize 175B+ parameter models with zero performance
degradation.

The LLM.int8() Pipeline

1. Input Hidden States (X) arrive.

2. Outlier Detection: The 0.1% of outlier feature dimensions in X are identified.

3. Decomposition:
m The "outlier" part of X is multiplied by its corresponding weights in FP16.
m The "normal" part of X is quantized vector-wise and multiplied by the vector-wise quantized weights in INT8.

4. Results are added to produce the final, accurate output.

Method
000@0

15/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Fun Analogy: Quantization is like Packing for a Trip

PACKING STYLES

\I.l(ﬂ-l*l

m Absmax quantization: Stuff all clothes into a single-size
bag — the bulkiest coat decides the size.

m Zeropoint: Fold and shift everything neatly, still same
bag.

m Vector-wise: Pack different types of items in their own
bags — one for shirts, one for shoes.

m Mixed-precision: Keep the formal suit in a garment bag
(full-size), everything else goes in compressible packing
cubes.

Method
0000e@

16/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Experiments Overview

m Objective: Validate LLM.int8()
m Questions Addressed:

m Can LLM.int8() prevent performance collapse typical in traditional 8-bit methods?
m Does robustness scale with model size?

m Benchmarked extensively against strong baselines across model scales.

Experiments and Results
@0000000

17/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Experimental Setup

Evaluation Strategies:
m Language Modeling (Perplexity)
m Dataset: C4

m Lower perplexity indicates better performance.
m Sensitive to quantization.

m Models: 125M-13B parameters.
m Zero-shot Downstream Tasks

m Tasks: WinoGrande, HellaSwag, PIQA, LAMBADA
m Evaluated via EleutherAl harness.

m Reflects practical application performance.
m Models: 125M-175B parameters.

Experiments and Results
O®@000000

18/39 June 11,2025 Zhaokun Wang: LLM.int8()

Figure 14: Language Modeling Setup

Language Modeling (Perplexity)
Dataset: C4

Perplexity
(lower is better)

Sensitive to
125M 355M 1.3B 27B 67B 13B quantization

Figure 15: Zero-shot Setup

Zero-shot Downstream Tasks

g WinoGrande

Q HellaSwag x

@ PloA 5 3 1 1‘
AR LAMBADA 0y 175B

Evaluated via EleutherAl harness

Heidelberg University

Perplexity Results

m Standard Int8 significantly degrades at larger scales (>6.7B).
m LLM.int8() retains performance at all scales.
Conclusion: LLM.int8 uniquely maintains perplexity performance.

Table 1: Perplexity Results

Parameters 125M 13B 27B 6.7B 13B

32-bit Float 2565 1591 1443 13.30 1245
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 1624 1476 1349 13.94
Int8 absmax row-wise 3093 17.08 1524 14.13 16.49
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 2572 1594 1436 13.38 13.47
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 1246

Absmax LLM.int8() (vector-wise + decomp) 25.83 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 15.92 1443 13.24 1245

Zero-shot Task Performance

m Metrics: Mean zero-shot accuracy

m Standard Int8 deteriorates significantly after 6.7B parameters.
m LLM.int8() consistently matches FP16 performance up to 175B.
m Phase transition at 6.7B highlights the superiority of LLM.int8.

Figure 16: Zero-shot Task Performance

Mean zeroshot accuracy

20/39 June 11,2025 Zhaokun Wang: LLM.int8()

0.7

o
o

i
5}

I
IS

0.3

|
Method o
— LLM.int8() | /u/‘
" o L
—— 8-bit baseline | /'
—— 16-bit baseline //'
o |
o/ l
|
|
/ '
/.. |
o I
|
|
emergence of ——»|
|

outlier features

e

) Q Q Q QL g)
RO NG A o > o & 5

v ~)
Parameters

Experiments and Results
000@0000

Heidelberg University

Inference Speed and Latency

m Memory Efficiency:

m Approximately 2x reduction.
m OPT-175B and BLOOM-176B feasible on a single server.

Table 2: Inference Speed and Latency

Largest Model that can be run

Class Hardware GPU Memory 8-bit 16-bit
Enterprise 8x A100 80 GB OPT-175B/BLOOM OPT-175B / BLOOM
Enterprise 8x A100 40 GB OPT-175B / BLOOM OPT-66B
Academic server 8x RTX 3090 24 GB OPT-175B / BLOOM OPT-66B
Academic desktop 4x RTX 3090 24 GB OPT-66B OPT-30B

Paid Cloud Colab Pro 15GB OPT-13B GPT-J-6B

Free Cloud Colab 12GB TO0/T5-11B GPT-2 1.3B

Experiments and Results
0000@000

21/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Inference Speed and Latency

m Memory Efficiency:

m Approximately 2x reduction.
m OPT-175B and BLOOM-176B feasible on a single server.

m Speed Improvements:
m Small models (<6.7B): Minimal impact.
m Large models (13B): Int8 matrix multiplication 1.2x faster.
m Latency per token matches FP16 at large batch sizes.

Table 3: Inference Speed and Latency

GPT-3 Size Small Medium Large XL 27B 6.7B 13B 175B

Model dimension 768 1024 1536 2048 2560 4096 5140 12288
FP16-bit baseline 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Int8 without overhead 0.99x 1.08x 1.43x 1.61x 1.63x 1.67x 2.13x 2.29x
Absmax PyTorch+NVIDIA 0.25x 0.24x 0.36x 0.45x 0.53x 0.70x 0.96x 1.50x
Vector-wise PyTorch+NVIDIA 0.21x 0.22x 0.33x 041Ix 0.50x 0.65x 091x 1.50x
Vector-wise 043x 0.49x 0.74x 091x 094x 1.18x 1.59x 2.00x

LLM.int8() (vector-wise+decomp) 0.14x 0.20x 0.36x 0.51x 0.64x 0.86x 1.22x 1.81x

Experiments and Results
00000@00

22/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Inference Speed and Latency

m Memory Efficiency:

m Approximately 1.2x reduction.
m OPT-175B and BLOOM-176B feasible on a single server.

m Speed Improvements:

m Small models (<6.7B): Minimal impact.
m Large models (13B): Int8 matrix multiplication 1.2x faster.
m Latency per token matches FP16 at large batch sizes.

Table 4: Inference Speed and Latency

Batch Size Hardware 1 8 32

bfloat16 baseline 8xA10080GB 239 32 9.94
LLM.int8() 8xA10080GB 253 34 10.44
LLM.int8() 4xA10080GB 246 33 9.40
LLM.int8() 3xA10080GB 247 33 9.11

Experiments and Results
000000e0

23/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Emergent Outlier Behavior

m Outliers become significant at 6.7B parameters:

m 0.1% features represent 20% of softmax mass.
m Removing outliers drastically reduces accuracy and increases perplexity.

m Conclusion: Handling outliers critical for maintaining performance.

Table 5: Emergent Outlier Behavior

Outliers Frequency Top-1 softmax p
Model PPL| Params Count 1-sided Layers SDims Quartiles w/ Outlier No Outlier
GPT2 335 117 1 1 25% 6% (-8, -7, -6) 45% 19%
GPT2 26.0 345M 2 1 29% 18% 6,7,8) 45% 19%
FSEQ 257 125M 2 2 25% 22% (-40,-23, -11) 32% 24%
GPT2 22.6 762M 2 0 31% 16% (-9,-6,9) 41% 18%
GPT2 21.0 15B 2 1 41% 35% (-11,-9,-7) 41% 25%
FSEQ 159 1.3B 4 3 64% 47% (-33,-21,-11) 39% 15%
FSEQ 144 2.7B 5 5 52% 18% (-25,-16,-9) 45% 13%
GPT-J 13.8 6.0B 6 6 62% 28% (-21,-17, -14) 55% 10%
FSEQ 13.3 6.7B 6 6 100% 75% (-44,-40, -35) 35% 13%
FSEQ 12.5 13B 7 6 100% 73% (-63,-58, -45) 37% 16%

Experiments and Results
0000000 e

24/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Detection Methodology

m Outlier Criteria:
m Magnitude 6.0 in feature dimension h.
m Present in 25% of layers (systematic emergence).
m Affects 6% of sequence dimensions (s).
m Scope:
m Analyzed attention/FFN expansion layers (ignored contraction layers).
m Validated across 3 frameworks (OpenAl, Fairseq, TensorFlow-Mesh) and 10 models (125M—13B params).

Figure 17: Detection Methodology

Detection Methodology

Outlier Criteria Scope

Expansion layers

H ..
@ OpenAI

Mag = 6.0 (h) Fairseq

25% layers «—J E TensorFlow-Mesh

6% sequence 10 models

Emergence Patterns

m By parameter count: sudden phase shift between 6 B — 6.7 B
m Layers affected: 65 % — 100 %
m Tokens affected: 35 % — 75 %

m By perplexity (PPL): smooth exponential growth—ouitliers rise steadily as PPL falls
m Implies emergence is performance-driven, not size-driven alone

m Result: onset of quantization failure aligns with this phase shift

Figure 18: Emergence Patterns

® % layers affected

® % tokens affected /
80 emergence of
)
[]

outlier features

100

100 :..
|

80

60
60

40
40

20
>
20 [,

emergence of
4 outlier features

Percentage of layers or tokens affected

Percentage of layers or tokens affected

0 5 4 6 8 10 1 35 30 25 20 15
C4 perplexit
Parameters in billions perp y
(@) (b)

Ouitlier Analysis
O®@0000

26/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Magnitude & Frequency Dynamics

m Median outlier magnitude jumps sharply once every layer hosts outliers
m 6.7 B model: median |x| 40
m 13 B model: median |x| 60 — 65

m Count trend: strictly monotonic w.r.t. decreasing PPL, non-monotonic w.r.t. size
m Despite 150 k outlier activations per 2048-token pass (13 B), they occupy 7 hidden dims

Figure 19: Magnitude & Frequency Dynamics

(=)}
o

emergence of 5 |]
outlier features

w
o
(o))

N
o

w

IS

w

N
o
Outlier features count

N

emergence of |
outlier features|

Median feature outlier magnitude
w
o

=
o

=

35 30 25 20 15 30 25 20 15
C4 perplexity C4 perplexity

(@ (b)

w
w

Ouitlier Analysis
00@000

27/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Impact on Prediction

m Zeroing 7 outlier dims —
m Top-1 softmax p: 40 % — 20 %
m Validation PPL: +600 — 1000 %
m Zeroing 7 random non-outlier dims —
m Top-1 softmax p: -0.02 - 0.3 %
m PPL: +0.1 %

m Take-away: these few dims carry disproportional semantic load—precision here is critical.

Table 6: Impact on Prediction

Outliers Frequency Top-1 softmax p
Model PPL| Params Count 1-sided Layers SDims Quartiles w/ Outlier No Outlier
GPT2 335 117M 1 1 25% 6% (-8, -7, -6) 45% 19%
GPT2 26.0 345M 2 1 29% 18% 6,7,8) 45% 19%
FSEQ 257 125M 2 2 25% 22% (-40,-23,-11) 32% 24%
GPT2 22.6 762M 2 0 31% 16% (-9, -6,9) 41% 18%
GPT2 21.0 1.5B 2 1 41% 35% (-11,-9, -7) 41% 25%
FSEQ 159 1.3B 4 3 64% 47% (-33,-21,-11) 39% 15%
FSEQ 144 2.7B 5 5 52% 18% (-25,-16,-9) 45% 13%
GPT-J 13.8 6.0B 6 6 62% 28% (-21,-17, -14) 55% 10%
FSEQ 133 6.7B 6 6 100% 75% (-44,-40, -35) 35% 13%
FSEQ 125 13B 7 6 100% 73% (-63,-58, -45) 37% 16%

Outlier Analysis
000@00

28/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Challenges for Quantization

m Outliers break symmetric quantization (e.g.,
absmax)

m Result: precision loss, cascading inference failure
m Zeropoint quantization:

m Handles asymmetry better by mapping to [-127, 127]
m Works well up to 13B, then fails due to magnitude growth

m Mixed-Precision Decomposition:

m Resolves failures post-13B
m Removes need for asymmetric handling — improved stability

29/39 June 11,2025 Zhaokun Wang: LLM.int8()

Figure 20: Challenges for Quantization

Challenges for Quantization

SYMMETRIC ZERO-POINT MIXED-PRECISION
QUANTIZATION QUANTIZATION DECOMPOSITION

A th B

Outliers <13B OK >13B Stable

Outlier Analysis
0000@0

Heidelberg University

Small Summary

m Outliers are few but powerful — tiny subsets control performance.

m They systematically emerge with scaling and lower perplexity.
m Effective handling (e.g., via mixed-precision) is essential for:
m Stable quantization
m Scalable inference and training

m Critical to modern LLM design and optimization.

Ouitlier Analysis
00000®

30/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Core Contributions and Challenges

m LLM.int8: The First Degradation-Free 8-bit Inference

at 175B Scale
m Key Innovations:
m Vector-wise quantization: Fine-grained scale control for
weights/activations.
m Mixed-precision decomposition: Isolates outlier features in
FP16 (99.9% values in INT8).
m Limitations:
m Inference-only (no training acceleration).
m Attention layers remain unquantized.
m No online speedup (no hardware-native INT8 compute).

Conclusion
00000000

31/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Future Directions

m Next Frontiers in LLM Quantization:
m Attention Layer Quantization:
m Critical for end-to-end efficiency; requires new methods.

m FP8 Adoption:

Future Directions
in LLM Quantization

m Floating-point 8-bit formats for better accuracy/compatibility .[l[’j%]
trade-offs. o Lo 000
m 8-bit Training & Finetuning: beton) o || I ot
m Early success with FFN layers; attention projections still
challenging.

m Extreme Memory Optimization:

= KV cache quantization for long sequencesy/large batches. Figure 21: Future directions in LLM quantization research.

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

Evolution of Quantization Methods

SmoothQuant (2022)

Shift activation
m Post-LLM.int8 Advancements: outliers

m SmoothQuant (2022):

m Migrates activation outliers to weights. — Enables W8AS8 &

hardware acceleration. »

Figure 22: Evolution of quantization methods over time.

Evolution of Quantization Methods

m Post-LLM.int8 Advancements:
m AWQ (2023):

m Protects salient weights via activation-aware scaling. —
W4A16 with 1.85x speedup.

Figure 23: Evolution of quantization methods over time.

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

Evolution of Quantization Methods

m Post-LLM.int8 Advancements:
m GPTQ (2023):

m Hessian-based optimization for minimal loss. — INT8/INT4
support; 2x speedup.

Figure 24: Evolution of quantization methods over time.

Practical Impact & Conclusion

m Democratizing Large-Scale Inference:
m Enables 175B models on consumer-grade GPUs (e.g.,
OPT-175B, BLOOM).
m 2x memory reduction — Wider accessibility for
academia/low-resource labs.
m Integrated into HuggingFace, BitsAndBytes, AutoGPTQ,
AutoAWQ.
m Conclusion:
m Quantization is no longer a compromise. With methods
like LLM.int8 and its successors, we enable real-world
deployment of massive models without sacrificing

[OPT- |
\ 175B 4

2X

ez D)
Auto Auto
GPTQ AWQ

Quantization
without Compromise

performance. Figure 25: Practical impact and conclusion of LLM.int8.

36/39 June 11,2025 Zhaokun Wang: LLM.int8()

Heidelberg University

Conclusion
00000000

References

[1] T. Dettmers, M. Lewis, Y. Belkada, L. Zettlemoyer (2022).
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.

[2] M. Grootendorst (2023).
A Visual Guide to Quantization.
[3] Y. Belkada T. Dettmers (2022).
A Gentle Introduction to 8-bit Matrix Multiplication...

[4] G. Xiao, J. Lin, et al. (2022).

SmoothQuant: Accurate and Efficient Post-Training Quantization...

[5] J. Lin, J. Tang, et al. (2023).
AWQ): Activation-aware Weight Quantization...

[6] E. Frantar, S. Ashkboos, et al. (2023).
GPTQ: Accurate Post-Training Quantization...

37/39 June 11,2025 Zhaokun Wang: LLM.int8()

Heidelberg University

Conclusion
000000 e00

https://arxiv.org/abs/2208.07339
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://huggingface.co/blog/hf-bitsandbytes-integration
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2210.17323

Image Table Attribution

m Tables 1-6: Adapted from Dettmers et al. [1].

m Figure 1: Sourced from the Hugging Face Blog [3].

m Figures 2-9: Adapted from Maarten’s Al Newsletter [2].
m Figures 10, 11, 12, 16: Adapted from Dettmers et al. [1].

m Figures 22-24: These visuals illustrate concepts from their respective papers on SmoothQuant [4], AWQ [5], and
GPTQ [6].

m Other auxiliary images (e.g., Figs. 13, 14, 15, 17-21, 25) were created by the presenter or generated via GPT-40
for illustrative purposes.

Conclusion
000000080

38/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

Q&A

Thank You! Questions?

Conclusion
00000000 e

39/39 June 11,2025 Zhaokun Wang: LLM.int8() Heidelberg University

	Background
	Method
	Experiments and Results
	Outlier Analysis
	Conclusion

