
LLM.int8(): 8-bit Matrix
Multiplication for Transformers at
Scale
Presenter: Zhaokun Wang | June 11, 2025

1. Background

2.Method

3. Experiments and Results

4. Outlier Analysis

5. Conclusion

Content

LLMs like GPT-3, PaLM, and OPT have revolutionized
NLP:

Zero-shot reasoning
Translation
Creative writing

But at high costs:
Hundreds of billions of parameters
Massive GPU memory and compute

Figure 1: Illustration of why efficient inference matters.

Background Method Experiments and Results Outlier Analysis Conclusion

3/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

LLMs are Powerful but Too Large

The Core Question:

How can we run these giant models on commodity hardware?

The Key Idea: Quantization

A technique to dramatically shrink models by converting their parameters from a high-precision, large-footprint format to
a low-precision, small-footprint one.

FP32 → INT8
Background Method Experiments and Results Outlier Analysis Conclusion

4/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Our Goal: Democratizing LLMswith Quantization

LLMs parameters typically use floating-point (FP32)
representation:

FP32 consists of:
Sign bit
Exponent
Mantissa (fraction)

Figure 2: Floating-point representation basics.

Background Method Experiments and Results Outlier Analysis Conclusion

5/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Numerical Representation Basics

LLMs parameters typically use floating-point (FP32)
representation:

FP32 consists of:
Sign bit
Exponent
Mantissa (fraction)

Higher bit-width = greater precision & dynamic range but
increased memory use:

FP32 provides high precision and dynamic range.
FP16 reduces memory by half at the cost of precision.

Figure 3: Floating-point representation basics.

Background Method Experiments and Results Outlier Analysis Conclusion

6/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Numerical Representation Basics

Quantization reduces precision of model parameters from FP32 to lower bit-width representations:
FP32 → INT8 (only 8 bits, 256 discrete values)

Benefits:
Reduces memory, bandwidth, latency, and compute.
Small precision loss typically occurs but is minimized by careful methods.

Figure 4: Quantization process illustration. Figure 5: Distribution comparison before and after quantization.

Background Method Experiments and Results Outlier Analysis Conclusion

7/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Introduction to Quantization

FP32 (Floating Point)

High precision & dynamic range.
Composed of sign, exponent, and mantissa.
Large Memory Footprint.

INT8 (Integer)

Represents only 256 discrete values.
Requires mapping via Scale and Zero-Point.
Small Memory Footprint.

Figure 6: Quantization process details.

Background Method Experiments and Results Outlier Analysis Conclusion

8/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

How ItWorks: From Floating Points to Integers

This is the simplest method, scaling values symmetrically around zero.

How it Works

1. Find the maximum absolute value (α).
2. Compute scale: s = α/127.
3. Quantize: q = round(x/s).

Pros & Cons

Simple and fast.
Very sensitive to outliers. A single large value degrades
precision for all others.

Figure 7: Illustration of absmax quantization.

Background Method Experiments and Results Outlier Analysis Conclusion

9/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Absmax Quantization

This method shifts the range to better utilize the 256 available integer values.

How it Works

1. Find the min and max values.
2. Compute scale: s = (max−min)/255.
3. Compute zero_point to map the original zero

correctly.

Pros & Cons

More efficient for asymmetric data (e.g., after ReLU).
Computationally more expensive.

Figure 8: Illustration of zeropoint quantization.

Background Method Experiments and Results Outlier Analysis Conclusion

10/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Zeropoint Quantization

As models exceed ∼6 billion parameters, a new problem emerges.

The Problem: Emergence of Strong Outliers

A tiny fraction of feature dimensions (< 0.1%) have values that are orders of magnitude larger than all others. These
are not noise; they are critical for model performance.

The Consequence: Standard quantization is completely

thrown off by these outliers. To accommodate them, the
‘scale‘ becomes huge, forcing all normal values to be
quantized to near-zero, destroying model accuracy.

Figure 9: A few feature dimensions have extreme magnitudes.

Background Method Experiments and Results Outlier Analysis Conclusion

11/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Why Standard Quantization Fails for LargeModels

Our approach discards the "one-size-fits-all" strategy. LLM.int8() is a hybrid method designed specifically for the outlier
phenomenon in large Transformers.

Innovation 1: Vector-wise Quantization
Instead of one scale for the whole tensor, use fine-grained
scales. This localizes the impact of outliers.

Innovation 2: Mixed-Precision Decomposition

Don’t quantize the extreme outliers at all. Process them in
high precision, and everything else in low precision.

Figure 10: LLM.int8() combines two key ideas to preserve accuracy.

Background Method Experiments and Results Outlier Analysis Conclusion

12/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Introducing LLM.int8(): A Hybrid, Two-Part Solution

The Idea
Global scaling is too coarse. An outlier in one column shouldn’t ruin the precision for all other columns.

The Technique:
In a matrix multiplication, we calculate a separate ‘scale‘
factor for each column of the weight matrix and each
row of the input matrix.

The Benefit:
Outlier effects are contained. An outlier in one vector
only affects the scale for that specific vector, preserving
the precision of all other data.

Figure 11: A separate scale for each vector localizes quantization errors.

Background Method Experiments and Results Outlier Analysis Conclusion

13/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Part 1: Vector-wise Quantization

The Idea
For the most extreme outliers, even fine-grained quantization is not enough. The solution is to not quantize them at all.

The Technique:
1. Detect: Identify the few dimensions that contain systematic

outliers.
2. Decompose: Split the matrix multiplication:

The vast majority (99.9%) is multiplied using efficient INT8.
The tiny fraction of outlier dimensions (0.1%) are multiplied in full
FP16 precision.

3. Combine: The results are added together.

Figure 12: Isolating outliers in FP16 preserves their critical
information.

Background Method Experiments and Results Outlier Analysis Conclusion

14/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Part 2: Mixed-Precision Decomposition

LLM.int8() seamlessly integrates these two techniques to quantize 175B+ parameter models with zero performance
degradation.

The LLM.int8() Pipeline

1. Input Hidden States (X) arrive.
2. Outlier Detection: The 0.1% of outlier feature dimensions in X are identified.
3. Decomposition:

The "outlier" part of X is multiplied by its corresponding weights in FP16.
The "normal" part of X is quantized vector-wise and multiplied by the vector-wise quantized weights in INT8.

4. Results are added to produce the final, accurate output.

Background Method Experiments and Results Outlier Analysis Conclusion

15/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

The Complete Picture: How LLM.int8()Works

Absmax quantization: Stuff all clothes into a single-size
bag — the bulkiest coat decides the size.
Zeropoint: Fold and shift everything neatly, still same
bag.
Vector-wise: Pack different types of items in their own
bags — one for shirts, one for shoes.
Mixed-precision: Keep the formal suit in a garment bag
(full-size), everything else goes in compressible packing
cubes.

Figure 13: Analogy of quantization methods to packing strategies.

Background Method Experiments and Results Outlier Analysis Conclusion

16/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Fun Analogy: Quantization is like Packing for a Trip

Objective: Validate LLM.int8()
Questions Addressed:

Can LLM.int8() prevent performance collapse typical in traditional 8-bit methods?
Does robustness scale with model size?

Benchmarked extensively against strong baselines across model scales.

Background Method Experiments and Results Outlier Analysis Conclusion

17/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Experiments Overview

Evaluation Strategies:
Language Modeling (Perplexity)

Dataset: C4
Lower perplexity indicates better performance.
Sensitive to quantization.
Models: 125M–13B parameters.

Zero-shot Downstream Tasks
Tasks: WinoGrande, HellaSwag, PIQA, LAMBADA
Evaluated via EleutherAI harness.
Reflects practical application performance.
Models: 125M–175B parameters.

Figure 14: Language Modeling Setup

Figure 15: Zero-shot Setup

Background Method Experiments and Results Outlier Analysis Conclusion

18/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Experimental Setup

Standard Int8 significantly degrades at larger scales (>6.7B).
LLM.int8() retains performance at all scales.

Conclusion: LLM.int8 uniquely maintains perplexity performance.

Table 1: Perplexity Results

Background Method Experiments and Results Outlier Analysis Conclusion

19/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Perplexity Results

Metrics: Mean zero-shot accuracy
Standard Int8 deteriorates significantly after 6.7B parameters.
LLM.int8() consistently matches FP16 performance up to 175B.
Phase transition at 6.7B highlights the superiority of LLM.int8.

Figure 16: Zero-shot Task Performance

Background Method Experiments and Results Outlier Analysis Conclusion

20/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Zero-shot Task Performance

Memory Efficiency:
Approximately 2x reduction.
OPT-175B and BLOOM-176B feasible on a single server.

Table 2: Inference Speed and Latency

Background Method Experiments and Results Outlier Analysis Conclusion

21/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Inference Speed and Latency

Memory Efficiency:
Approximately 2x reduction.
OPT-175B and BLOOM-176B feasible on a single server.

Speed Improvements:
Small models (<6.7B): Minimal impact.
Large models (13B): Int8 matrix multiplication 1.2x faster.
Latency per token matches FP16 at large batch sizes.

Table 3: Inference Speed and Latency

Background Method Experiments and Results Outlier Analysis Conclusion

22/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Inference Speed and Latency

Memory Efficiency:
Approximately 1.2x reduction.
OPT-175B and BLOOM-176B feasible on a single server.

Speed Improvements:
Small models (<6.7B): Minimal impact.
Large models (13B): Int8 matrix multiplication 1.2x faster.
Latency per token matches FP16 at large batch sizes.

Table 4: Inference Speed and Latency

Background Method Experiments and Results Outlier Analysis Conclusion

23/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Inference Speed and Latency

Outliers become significant at 6.7B parameters:
0.1% features represent 20% of softmax mass.
Removing outliers drastically reduces accuracy and increases perplexity.

Conclusion: Handling outliers critical for maintaining performance.

Table 5: Emergent Outlier Behavior

Background Method Experiments and Results Outlier Analysis Conclusion

24/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Emergent Outlier Behavior

Outlier Criteria:
Magnitude 6.0 in feature dimension h.
Present in 25% of layers (systematic emergence).
Affects 6% of sequence dimensions (s).

Scope:
Analyzed attention/FFN expansion layers (ignored contraction layers).
Validated across 3 frameworks (OpenAI, Fairseq, TensorFlow-Mesh) and 10 models (125M–13B params).

Figure 17: Detection Methodology

Background Method Experiments and Results Outlier Analysis Conclusion

25/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

DetectionMethodology

By parameter count: sudden phase shift between 6 B → 6.7 B
Layers affected: 65 % → 100 %
Tokens affected: 35 % → 75 %

By perplexity (PPL): smooth exponential growth—outliers rise steadily as PPL falls
Implies emergence is performance-driven, not size-driven alone

Result: onset of quantization failure aligns with this phase shift

Figure 18: Emergence Patterns

Background Method Experiments and Results Outlier Analysis Conclusion

26/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Emergence Patterns

Median outlier magnitude jumps sharply once every layer hosts outliers
6.7 B model: median |x| 40
13 B model: median |x| 60 – 65

Count trend: strictly monotonic w.r.t. decreasing PPL, non-monotonic w.r.t. size
Despite 150 k outlier activations per 2048-token pass (13 B), they occupy 7 hidden dims

Figure 19: Magnitude & Frequency Dynamics

Background Method Experiments and Results Outlier Analysis Conclusion

27/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Magnitude & Frequency Dynamics

Zeroing 7 outlier dims →
Top-1 softmax p: 40 % → 20 %
Validation PPL: +600 – 1000 %

Zeroing 7 random non-outlier dims →
Top-1 softmax p: -0.02 – 0.3 %
PPL: +0.1 %

Take-away: these few dims carry disproportional semantic load—precision here is critical.

Table 6: Impact on Prediction

Background Method Experiments and Results Outlier Analysis Conclusion

28/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Impact on Prediction

Outliers break symmetric quantization (e.g.,
absmax)

Result: precision loss, cascading inference failure
Zeropoint quantization:

Handles asymmetry better by mapping to [-127, 127]
Works well up to 13B, then fails due to magnitude growth

Mixed-Precision Decomposition:
Resolves failures post-13B
Removes need for asymmetric handling → improved stability

Figure 20: Challenges for Quantization

Background Method Experiments and Results Outlier Analysis Conclusion

29/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Challenges for Quantization

Outliers are few but powerful — tiny subsets control performance.
They systematically emerge with scaling and lower perplexity.
Effective handling (e.g., via mixed-precision) is essential for:

Stable quantization
Scalable inference and training

Critical to modern LLM design and optimization.

Background Method Experiments and Results Outlier Analysis Conclusion

30/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Small Summary

LLM.int8: The First Degradation-Free 8-bit Inference
at 175B Scale
Key Innovations:

Vector-wise quantization: Fine-grained scale control for
weights/activations.
Mixed-precision decomposition: Isolates outlier features in
FP16 (99.9% values in INT8).

Limitations:
Inference-only (no training acceleration).
Attention layers remain unquantized.
No online speedup (no hardware-native INT8 compute).

Background Method Experiments and Results Outlier Analysis Conclusion

31/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Core Contributions and Challenges

Next Frontiers in LLM Quantization:
Attention Layer Quantization:

Critical for end-to-end efficiency; requires new methods.
FP8 Adoption:

Floating-point 8-bit formats for better accuracy/compatibility
trade-offs.

8-bit Training & Finetuning:
Early success with FFN layers; attention projections still
challenging.

Extreme Memory Optimization:
KV cache quantization for long sequences/large batches. Figure 21: Future directions in LLM quantization research.

Background Method Experiments and Results Outlier Analysis Conclusion

32/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Future Directions

Post-LLM.int8 Advancements:
SmoothQuant (2022):

Migrates activation outliers to weights. → Enables W8A8 &
hardware acceleration.

Figure 22: Evolution of quantization methods over time.

Background Method Experiments and Results Outlier Analysis Conclusion

33/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Evolution of QuantizationMethods

Post-LLM.int8 Advancements:
AWQ (2023):

Protects salient weights via activation-aware scaling. →
W4A16 with 1.85× speedup.

Figure 23: Evolution of quantization methods over time.

Background Method Experiments and Results Outlier Analysis Conclusion

34/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Evolution of QuantizationMethods

Post-LLM.int8 Advancements:
GPTQ (2023):

Hessian-based optimization for minimal loss. → INT8/INT4
support; 2× speedup.

Figure 24: Evolution of quantization methods over time.

Background Method Experiments and Results Outlier Analysis Conclusion

35/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Evolution of QuantizationMethods

Democratizing Large-Scale Inference:
Enables 175B models on consumer-grade GPUs (e.g.,
OPT-175B, BLOOM).
2× memory reduction → Wider accessibility for
academia/low-resource labs.
Integrated into HuggingFace, BitsAndBytes, AutoGPTQ,
AutoAWQ.

Conclusion:
Quantization is no longer a compromise. With methods
like LLM.int8 and its successors, we enable real-world
deployment of massive models without sacrificing
performance. Figure 25: Practical impact and conclusion of LLM.int8.

Background Method Experiments and Results Outlier Analysis Conclusion

36/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Practical Impact & Conclusion

[1] T. Dettmers, M. Lewis, Y. Belkada, L. Zettlemoyer (2022).
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.

[2] M. Grootendorst (2023).
A Visual Guide to Quantization.

[3] Y. Belkada T. Dettmers (2022).
A Gentle Introduction to 8-bit Matrix Multiplication...

[4] G. Xiao, J. Lin, et al. (2022).
SmoothQuant: Accurate and Efficient Post-Training Quantization...

[5] J. Lin, J. Tang, et al. (2023).
AWQ: Activation-aware Weight Quantization...

[6] E. Frantar, S. Ashkboos, et al. (2023).
GPTQ: Accurate Post-Training Quantization...

Background Method Experiments and Results Outlier Analysis Conclusion

37/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

References

https://arxiv.org/abs/2208.07339
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://huggingface.co/blog/hf-bitsandbytes-integration
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2210.17323

Tables 1-6: Adapted from Dettmers et al. [1].

Figure 1: Sourced from the Hugging Face Blog [3].

Figures 2-9: Adapted from Maarten’s AI Newsletter [2].

Figures 10, 11, 12, 16: Adapted from Dettmers et al. [1].

Figures 22-24: These visuals illustrate concepts from their respective papers on SmoothQuant [4], AWQ [5], and
GPTQ [6].

Other auxiliary images (e.g., Figs. 13, 14, 15, 17-21, 25) were created by the presenter or generated via GPT-4o
for illustrative purposes.

Background Method Experiments and Results Outlier Analysis Conclusion

38/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Image Table Attribution

Thank You! Questions?

Background Method Experiments and Results Outlier Analysis Conclusion

39/39 June 11, 2025 Zhaokun Wang: LLM.int8() Heidelberg University

Q&A

	Background
	Method
	Experiments and Results
	Outlier Analysis
	Conclusion

