

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

Presenter: Zhaokun Wang | June 11, 2025

Content

1. Background

- 2. Method
- 3. Experiments and Results
- 4. Outlier Analysis
- 5. Conclusion

LLMs are Powerful but Too Large

- LLMs like GPT-3, PaLM, and OPT have revolutionized NLP:
 - Zero-shot reasoning
 - Translation
 - Creative writing
- But at high costs:
 - Hundreds of billions of parameters
 - Massive GPU memory and compute

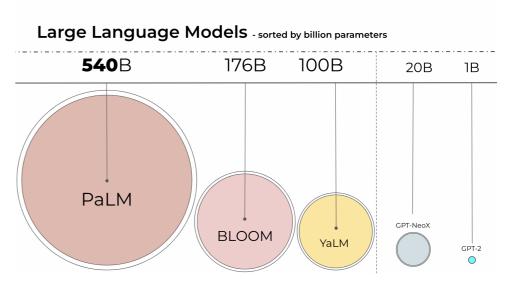


Figure 1: Illustration of why efficient inference matters.

Our Goal: Democratizing LLMs with Quantization

The Core Question:

How can we run these giant models on commodity hardware?

The Key Idea: Quantization

A technique to dramatically shrink models by converting their parameters from a high-precision, large-footprint format to a low-precision, small-footprint one.

FP32

 \rightarrow

INT8

Background

0 • 0 0 0 0 0 0 0

Method

Experiments and Results

Outlier Analysis

Numerical Representation Basics

- LLMs parameters typically use floating-point (FP32) representation:
 - FP32 consists of:
 - Sign bit
 - Exponent
 - Mantissa (fraction)

Float 16-bit (FP16)

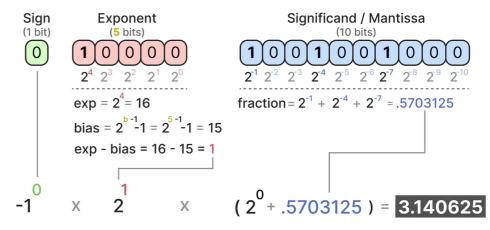


Figure 2: Floating-point representation basics.

Background
0000000

Method 00000 Experiments and Results

Numerical Representation Basics

- LLMs parameters typically use floating-point (FP32) representation:
 - FP32 consists of:
 - Sign bit
 - Exponent
 - Mantissa (fraction)
 - Higher bit-width = greater precision & dynamic range but increased memory use:
 - FP32 provides high precision and dynamic range.
 - FP16 reduces memory by half at the cost of precision.

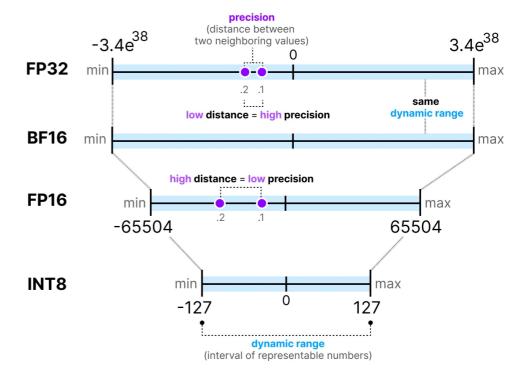


Figure 3: Floating-point representation basics.

Background
0000000

Method

Experiments and Results

Outlier Analysis

Introduction to Quantization

- Quantization reduces precision of model parameters from FP32 to lower bit-width representations:
 - FP32 → INT8 (only 8 bits, 256 discrete values)
- Benefits:
 - Reduces memory, bandwidth, latency, and compute.
 - Small precision loss typically occurs but is minimized by careful methods.

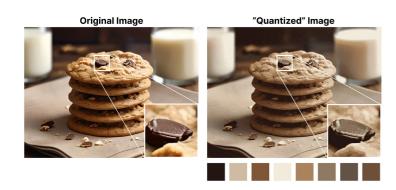


Figure 4: Quantization process illustration.

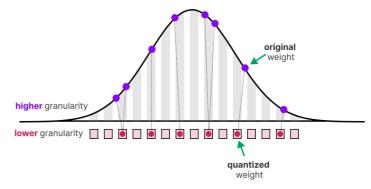


Figure 5: Distribution comparison before and after quantization.

How It Works: From Floating Points to Integers

FP32 (Floating Point)

- High precision & dynamic range.
- Composed of sign, exponent, and mantissa.
- **Large Memory Footprint.**

INT8 (Integer)

- Represents only 256 discrete values.
- Requires mapping via Scale and Zero-Point.
- Small Memory Footprint.

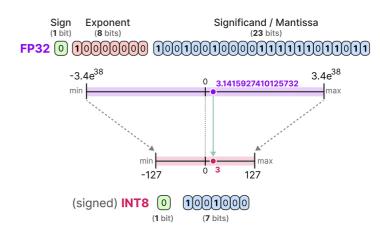


Figure 6: Quantization process details.

Background

Method

Experiments and Results

Absmax Quantization

This is the simplest method, scaling values symmetrically around zero.

How it Works

- 1. Find the maximum absolute value (α).
- 2. Compute scale: $s = \alpha/127$.
- 3. Quantize: q = round(x/s).

Pros & Cons

Simple and fast.

Very sensitive to outliers. A single large value degrades precision for all others.

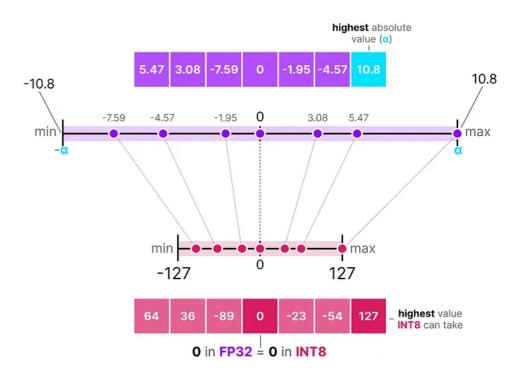


Figure 7: Illustration of absmax quantization.

Background 0000000

Method 00000 Experiments and Results

Outlier Analysis

Zeropoint Quantization

This method shifts the range to better utilize the 256 available integer values.

How it Works

- 1. Find the min and max values.
- 2. Compute scale: s = (max min)/255.
- 3. Compute zero_point to map the original zero correctly.

Pros & Cons

More efficient for asymmetric data (e.g., after ReLU). Computationally more expensive.

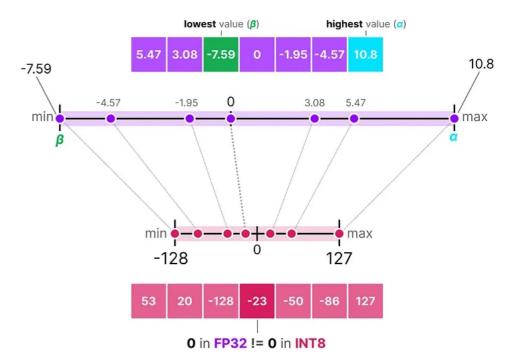


Figure 8: Illustration of zeropoint quantization.

Background 0000000

Method

Experiments and Results

Outlier Analysis

Why Standard Quantization Fails for Large Models

As models exceed \sim 6 billion parameters, a new problem emerges.

The Problem: Emergence of Strong Outliers

A tiny fraction of feature dimensions (< 0.1%) have values that are **orders of magnitude larger** than all others. These are not noise; they are critical for model performance.

The Consequence: Standard quantization is completely

thrown off by these outliers. To accommodate them, the 'scale' becomes huge, forcing all normal values to be quantized to near-zero, **destroying model accuracy**.

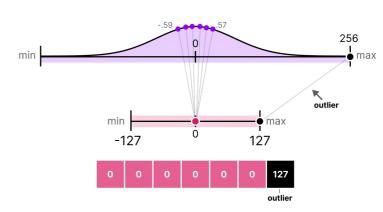


Figure 9: A few feature dimensions have extreme magnitudes.

Background 00000000 Method

Experiments and Results

Introducing LLM.int8(): A Hybrid, Two-Part Solution

Our approach discards the "one-size-fits-all" strategy. LLM.int8() is a hybrid method designed specifically for the outlier phenomenon in large Transformers.

Innovation 1: Vector-wise Quantization

Instead of one scale for the whole tensor, use fine-grained scales. This **localizes** the impact of outliers.

Innovation 2: Mixed-Precision Decomposition

Don't quantize the extreme outliers at all. Process them in high precision, and everything else in low precision.

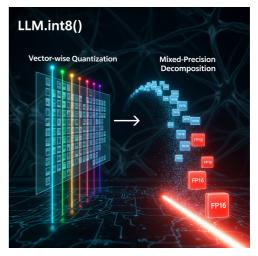


Figure 10: LLM.int8() combines two key ideas to preserve accuracy.

Part 1: Vector-wise Quantization

The Idea

Global scaling is too coarse. An outlier in one column shouldn't ruin the precision for all other columns.

The Technique:

In a matrix multiplication, we calculate a separate 'scale' factor for each column of the weight matrix and each row of the input matrix.

The Benefit:

Outlier effects are contained. An outlier in one vector only affects the scale for that specific vector, preserving the precision of all other data.

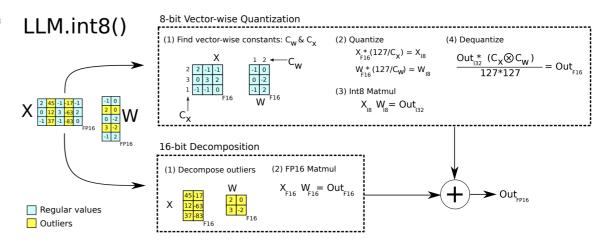


Figure 11: A separate scale for each vector localizes quantization errors.

Background

 Experiments and Results

Outlier Analysis

Part 2: Mixed-Precision Decomposition

The Idea

For the most extreme outliers, even fine-grained quantization is not enough. The solution is to not quantize them at all.

The Technique:

- 1. **Detect:** Identify the few dimensions that contain systematic outliers.
- 2. **Decompose:** Split the matrix multiplication:
 - The vast majority (99.9%) is multiplied using efficient **INT8**.
 - The tiny fraction of outlier dimensions (0.1%) are multiplied in full **FP16** precision.
- 3. Combine: The results are added together.

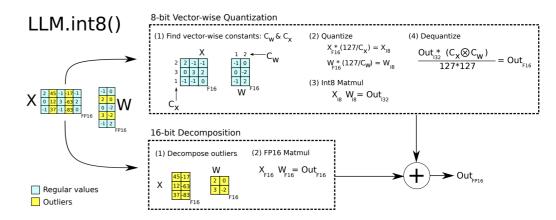


Figure 12: Isolating outliers in FP16 preserves their critical information.

The Complete Picture: How LLM.int8() Works

LLM.int8() seamlessly integrates these two techniques to quantize 175B+ parameter models with **zero performance degradation**.

The LLM.int8() Pipeline

- 1. Input Hidden States (X) arrive.
- 2. **Outlier Detection:** The 0.1% of outlier feature dimensions in X are identified.
- 3. Decomposition:
 - The "outlier" part of *X* is multiplied by its corresponding weights in **FP16**.
 - The "normal" part of X is quantized vector-wise and multiplied by the vector-wise quantized weights in **INT8**.
- 4. Results are added to produce the final, accurate output.

Fun Analogy: Quantization is like Packing for a Trip

- Absmax quantization: Stuff all clothes into a single-size bag the bulkiest coat decides the size.
- Zeropoint: Fold and shift everything neatly, still same bag.
- Vector-wise: Pack different types of items in their own bags — one for shirts, one for shoes.
- Mixed-precision: Keep the formal suit in a garment bag (full-size), everything else goes in compressible packing cubes.

Figure 13: Analogy of quantization methods to packing strategies.

Background

Method 0000 Experiments and Results

Outlier Analysis

Experiments Overview

- **Objective:** Validate LLM.int8()
- Questions Addressed:
 - Can LLM.int8() prevent performance collapse typical in traditional 8-bit methods?
 - Does robustness scale with model size?
- Benchmarked extensively against strong baselines across model scales.

Experimental Setup

Evaluation Strategies:

- Language Modeling (Perplexity)
 - Dataset: C4
 - Lower perplexity indicates better performance.
 - Sensitive to quantization.
 - Models: 125M-13B parameters.
- Zero-shot Downstream Tasks
 - Tasks: WinoGrande, HellaSwag, PIQA, LAMBADA
 - Evaluated via EleutherAl harness.
 - Reflects practical application performance.
 - Models: 125M–175B parameters.

Background

Method

Experiments and Results 0000000

Figure 14: Language Modeling Setup

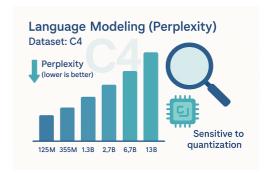


Figure 15: Zero-shot Setup

Outlier Analysis

Heidelberg University

Perplexity Results

- Standard Int8 significantly degrades at larger scales (>6.7B).
- LLM.int8() retains performance at all scales.

Conclusion: LLM.int8 uniquely maintains perplexity performance.

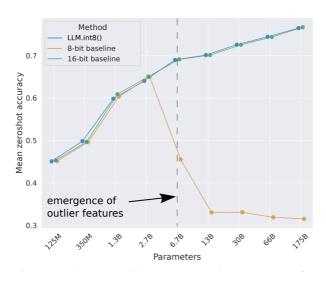
Table 1: Perplexity Results

Parameters	125M	1.3B	2.7B	6.7B	13B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax Int8 zeropoint	87.76	16.55	15.11	14.59	19.08
	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise Int8 absmax vector-wise Int8 zeropoint vector-wise	30.93	17.08	15.24	14.13	16.49
	35.84	16.82	14.98	14.13	16.48
	25.72	15.94	14.36	13.38	13.47
Int8 absmax row-wise + decomposition	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() (vector-wise + decomp)	25.83	15.93	14.44	13.24	12.45
Zeropoint LLM.int8() (vector-wise + decomp)	25.69	15.92	14.43	13.24	12.45

Zero-shot Task Performance

- Metrics: Mean zero-shot accuracy
- Standard Int8 deteriorates significantly after 6.7B parameters.
- LLM.int8() consistently matches FP16 performance up to 175B.
- Phase transition at 6.7B highlights the superiority of LLM.int8.

Figure 16: Zero-shot Task Performance



Background 00000000 Method

Experiments and Results

Inference Speed and Latency

■ Memory Efficiency:

- Approximately 2x reduction.
- OPT-175B and BLOOM-176B feasible on a single server.

Table 2: Inference Speed and Latency

			Largest Model that can be run		
Class	Hardware	GPU Memory	8-bit	16-bit	
Enterprise	8x A100	80 GB	OPT-175B / BLOOM	OPT-175B / BLOOM	
Enterprise	8x A100	40 GB	OPT-175B / BLOOM	OPT-66B	
Academic server	8x RTX 3090	24 GB	OPT-175B / BLOOM	OPT-66B	
Academic desktop	4x RTX 3090	24 GB	OPT-66B	OPT-30B	
Paid Cloud	Colab Pro	15 GB	OPT-13B	GPT-J-6B	
Free Cloud	Colab	12 GB	T0/T5-11B	GPT-2 1.3B	

Inference Speed and Latency

■ Memory Efficiency:

- Approximately 2x reduction.
- OPT-175B and BLOOM-176B feasible on a single server.

Speed Improvements:

- Small models (<6.7B): Minimal impact.
- Large models (13B): Int8 matrix multiplication 1.2x faster.
- Latency per token matches FP16 at large batch sizes.

Table 3: Inference Speed and Latency

GPT-3 Size	Small	Medium	Large	XL	2.7B	6.7B	13B	175B
Model dimension	768	1024	1536	2048	2560	4096	5140	12288
FP16-bit baseline Int8 without overhead	1.00x							
	0.99x	1.08x	1.43x	1.61x	1.63x	1.67x	2.13x	2.29x
Absmax PyTorch+NVIDIA Vector-wise PyTorch+NVIDIA Vector-wise LLM.int8() (vector-wise+decomp)	0.25x	0.24x	0.36x	0.45x	0.53x	0.70x	0.96x	1.50x
	0.21x	0.22x	0.33x	0.41x	0.50x	0.65x	0.91x	1.50x
	0.43x	0.49x	0.74x	0.91x	0.94x	1.18x	1.59x	2.00x
	0.14x	0.20x	0.36x	0.51x	0.64x	0.86x	1.22x	1.81x

Inference Speed and Latency

■ Memory Efficiency:

- Approximately 1.2x reduction.
- OPT-175B and BLOOM-176B feasible on a single server.

■ Speed Improvements:

- Small models (<6.7B): Minimal impact.
- Large models (13B): Int8 matrix multiplication 1.2x faster.
- Latency per token matches FP16 at large batch sizes.

Table 4: Inference Speed and Latency

Batch Size	Hardware	1	8	32
bfloat16 baseline	8xA100 80GB	239	32	9.94
LLM.int8() LLM.int8() LLM.int8()	8xA100 80GB 4xA100 80GB 3xA100 80GB	253 246 247	34 33 33	10.44 9.40 9.11

Emergent Outlier Behavior

- Outliers become significant at 6.7B parameters:
 - 0.1% features represent 20% of softmax mass.
 - Removing outliers drastically reduces accuracy and increases perplexity.
- Conclusion: Handling outliers critical for maintaining performance.

Table 5: Emergent Outlier Behavior

			Ou	tliers	Frequency			Top-1 softmax p	
Model	$\mathrm{PPL}\!\!\downarrow$	Params	Count	1-sided	Layers	SDims	Quartiles	w/ Outlier	No Outlier
GPT2	33.5	117M	1	1	25%	6%	(-8, -7, -6)	45%	19%
GPT2	26.0	345M	2	1	29%	18%	(6, 7, 8)	45%	19%
FSEQ	25.7	125M	2	2	25%	22%	(-40, -23, -11)	32%	24%
GPT2	22.6	762M	2	0	31%	16%	(-9, -6, 9)	41%	18%
GPT2	21.0	1.5B	2	1	41%	35%	(-11, -9, -7)	41%	25%
FSEQ	15.9	1.3B	4	3	64%	47%	(-33, -21, -11)	39%	15%
FSEQ	14.4	2.7B	5	5	52%	18%	(-25, -16, -9)	45%	13%
GPT-J	13.8	6.0B	6	6	62%	28%	(-21, -17, -14)	55%	10%
FSEQ	13.3	6.7B	6	6	100%	75%	(-44, -40, -35)	35%	13%
FSEQ	12.5	13B	7	6	100%	73%	(-63, -58, -45)	37%	16%

Background

Method 00000 Experiments and Results

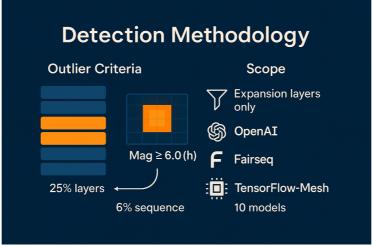
Detection Methodology

Outlier Criteria:

- Magnitude 6.0 in feature dimension h.
- Present in 25% of layers (systematic emergence).
- Affects 6% of sequence dimensions (s).

Scope:

- Analyzed attention/FFN expansion layers (ignored contraction layers).
- Validated across 3 frameworks (OpenAI, Fairseq, TensorFlow-Mesh) and 10 models (125M—13B params).



Background

Method

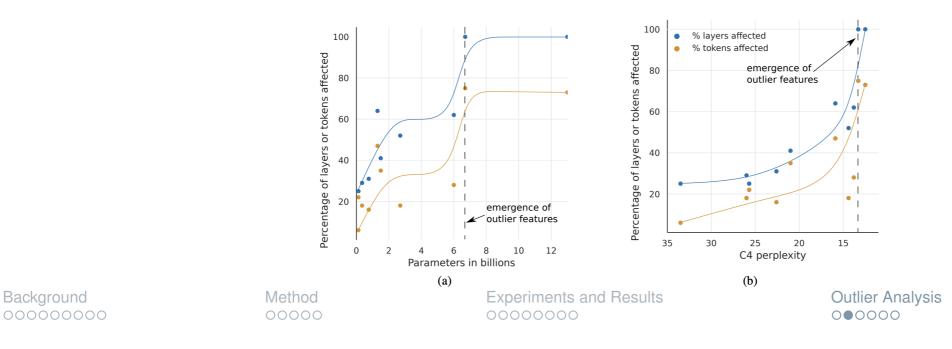
Experiments and Results

Outlier Analysis •00000

Emergence Patterns

- **By parameter count:** sudden phase shift between 6 B \rightarrow 6.7 B
 - Layers affected: 65 % → 100 %
 - Tokens affected: 35 % \rightarrow 75 %
- By perplexity (PPL): smooth exponential growth—outliers rise steadily as PPL falls
 - Implies emergence is performance-driven, not size-driven alone
- **Result:** onset of quantization failure aligns with this phase shift

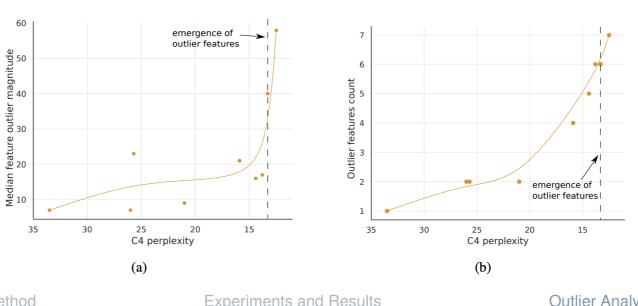
Figure 18: Emergence Patterns



Magnitude & Frequency Dynamics

- Median outlier magnitude jumps sharply once every layer hosts outliers
 - 6.7 B model: median |x| 40
 - 13 B model: median |x| 60 65
- **Count trend:** strictly monotonic w.r.t. decreasing PPL, non-monotonic w.r.t. size
- **Despite** 150 k outlier activations per 2048-token pass (13 B), they occupy 7 hidden dims

Figure 19: Magnitude & Frequency Dynamics



Background

Method

Experiments and Results

Outlier Analysis 00000

Impact on Prediction

■ Zeroing 7 outlier dims →

■ Top-1 softmax p: 40 % \rightarrow 20 %

■ Validation PPL: +600 – 1000 %

■ Zeroing 7 random non-outlier dims →

■ Top-1 softmax p: -0.02 – 0.3 %

■ PPL: +0.1 %

■ Take-away: these few dims carry disproportional semantic load—precision here is critical.

Table 6: Impact on Prediction

			Ou	tliers	Frequency		Frequency			Top-1 softmax p	
Model	$\mathrm{PPL}\!\!\downarrow$	Params	Count	1-sided	Layers	SDims	Quartiles	w/ Outlier	No Outlier		
GPT2	33.5	117M	1	1	25%	6%	(-8, -7, -6)	45%	19%		
GPT2	26.0	345M	2	1	29%	18%	(6, 7, 8)	45%	19%		
FSEQ	25.7	125M	2	2	25%	22%	(-40, -23, -11)	32%	24%		
GPT2	22.6	762M	2	0	31%	16%	(-9, -6, 9)	41%	18%		
GPT2	21.0	1.5B	2	1	41%	35%	(-11, -9, -7)	41%	25%		
FSEQ	15.9	1.3B	4	3	64%	47%	(-33, -21, -11)	39%	15%		
FSEQ	14.4	2.7B	5	5	52%	18%	(-25, -16, -9)	45%	13%		
GPT-J	13.8	6.0B	6	6	62%	28%	(-21, -17, -14)	55%	10%		
FSEQ	13.3	6.7B	6	6	100%	75%	(-44, -40, -35)	35%	13%		
FSEQ	12.5	13B	7	6	100%	73%	(-63, -58, -45)	37%	16%		

Background

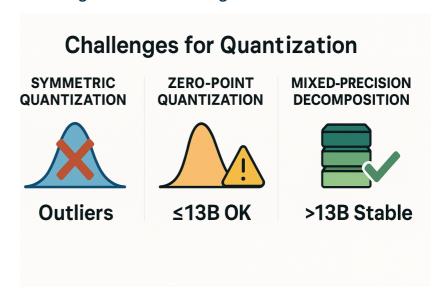
Method

Experiments and Results

Challenges for Quantization

- Outliers break symmetric quantization (e.g., absmax)
 - Result: precision loss, cascading inference failure
- Zeropoint quantization:
 - Handles asymmetry better by mapping to [-127, 127]
 - Works well up to 13B, then fails due to magnitude growth
- **■** Mixed-Precision Decomposition:
 - Resolves failures post-13B
 - Removes need for asymmetric handling → improved stability

Figure 20: Challenges for Quantization



Background

Method 00000 Experiments and Results

Outlier Analysis

Small Summary

- Outliers are few but powerful tiny subsets control performance.
- They systematically emerge with scaling and lower perplexity.
- Effective handling (e.g., via mixed-precision) is essential for:
 - Stable quantization
 - Scalable inference and training
- Critical to modern LLM design and optimization.

Core Contributions and Challenges

- LLM.int8: The First Degradation-Free 8-bit Inference at 175B Scale
- Key Innovations:
 - Vector-wise quantization: Fine-grained scale control for weights/activations.
 - Mixed-precision decomposition: Isolates outlier features in FP16 (99.9% values in INT8).
- **Limitations:**
 - Inference-only (no training acceleration).
 - Attention layers remain unquantized.
 - No online speedup (no hardware-native INT8 compute).

Future Directions

- Next Frontiers in LLM Quantization:
- Attention Layer Quantization:
 - Critical for end-to-end efficiency; requires new methods.
- **FP8 Adoption:**
 - Floating-point 8-bit formats for better accuracy/compatibility trade-offs.
- 8-bit Training & Finetuning:
 - Early success with FFN layers; attention projections still challenging.
- **Extreme Memory Optimization:**
 - KV cache quantization for long sequences/large batches.

Figure 21: Future directions in LLM quantization research.

Evolution of Quantization Methods

- Post-LLM.int8 Advancements:
- SmoothQuant (2022):
 - Migrates activation outliers to weights. → Enables W8A8 & hardware acceleration.

Figure 22: Evolution of quantization methods over time.

Evolution of Quantization Methods

- Post-LLM.int8 Advancements:
- AWQ (2023):
 - Protects salient weights via activation-aware scaling. → W4A16 with 1.85× speedup.

Figure 23: Evolution of quantization methods over time.

Experiments and Results

Evolution of Quantization Methods

- Post-LLM.int8 Advancements:
- GPTQ (2023):
 - Hessian-based optimization for minimal loss. \rightarrow INT8/INT4 support; 2× speedup.

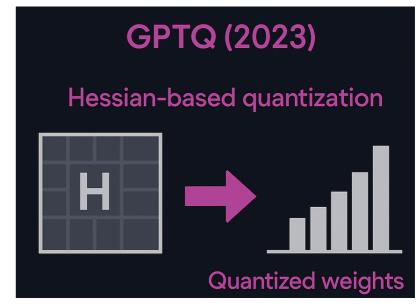


Figure 24: Evolution of quantization methods over time.

Background 00000000 Method 00000 Experiments and Results

Practical Impact & Conclusion

■ Democratizing Large-Scale Inference:

- Enables 175B models on consumer-grade GPUs (e.g., OPT-175B, BLOOM).
- 2× memory reduction → Wider accessibility for academia/low-resource labs.
- Integrated into HuggingFace, BitsAndBytes, AutoGPTQ, AutoAWQ.

Conclusion:

Quantization is no longer a compromise. With methods like LLM.int8 and its successors, we enable real-world deployment of massive models without sacrificing performance.

Figure 25: Practical impact and conclusion of LLM.int8.

References

- [1] T. Dettmers, M. Lewis, Y. Belkada, L. Zettlemoyer (2022). LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.
- [2] M. Grootendorst (2023). A Visual Guide to Quantization.
- [3] Y. Belkada T. Dettmers (2022). A Gentle Introduction to 8-bit Matrix Multiplication...
- [4] G. Xiao, J. Lin, et al. (2022). SmoothQuant: Accurate and Efficient Post-Training Quantization...
- [5] J. Lin, J. Tang, et al. (2023). AWQ: Activation-aware Weight Quantization...
- [6] E. Frantar, S. Ashkboos, et al. (2023). GPTQ: Accurate Post-Training Quantization...

Background

Method

Experiments and Results

Image Table Attribution

- **Tables 1-6:** Adapted from Dettmers et al. [1].
- **Figure 1:** Sourced from the Hugging Face Blog [3].
- Figures 2-9: Adapted from Maarten's Al Newsletter [2].
- **Figures 10, 11, 12, 16:** Adapted from Dettmers et al. [1].
- Figures 22-24: These visuals illustrate concepts from their respective papers on SmoothQuant [4], AWQ [5], and **GPTQ** [6].
- Other auxiliary images (e.g., Figs. 13, 14, 15, 17-21, 25) were created by the presenter or generated via GPT-40 for illustrative purposes.

Background

Method

Experiments and Results

Q&A

Thank You! Questions?

Background

Method

Experiments and Results

