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Abstract
Deploying large language models (LLMs) is
computationally expensive, making model com-
pression techniques like knowledge distillation
(KD) essential. This work presents a stable,
resource-efficient KD pipeline to compress a
Qwen2.5-3B-Instruct teacher into a Qwen2.5-
0.5B-Instruct student on consumer-grade hard-
ware. Our memory-conscious approach uses a
4-bit quantized teacher and trains the student
with 4-bit QLoRA. The core of our method
is a token-averaged Kullback-Leibler (KL)
divergence loss with gradient clipping, which
stabilizes training. On a held-out validation
set, the distilled student’s perplexity improved
by 25.8% (from 5.504 to 4.085), even slightly
surpassing its 3B teacher (PPL 4.225). Our
pipeline demonstrates an effective path for cre-
ating powerful, lightweight models under sig-
nificant resource constraints. 1

1 Introduction

While large language models (LLMs) have demon-
strated remarkable capabilities across various tasks
(Brown et al., 2020; Touvron et al., 2023), their
substantial size imposes significant challenges for
training, inference, and deployment, particularly in
resource-constrained environments. Model com-
pression techniques, such as pruning (LeCun et al.,
1990), quantization (Gholami et al., 2022), and
knowledge distillation (KD) (Hinton et al., 2015),
are essential for making these models more acces-
sible.

This project focuses on knowledge distillation,
a process where a smaller "student" model learns
to mimic the behavior of a larger "teacher" model.
We distilled a 3B-parameter teacher into a 0.5B-
parameter student, where both models are quan-
tized to 4-bit precision to minimize memory foot-
print. This setup is designed to be executable on a

1Codes are publicly available at https://github.
com/BufferHund/ResourceEfficient_Distillation_
SemesterProject

single consumer-grade GPU (e.g., NVIDIA T4 or
RTX series).

Our primary discovery is the refinement and val-
idation of a stable KD pipeline. We demonstrate
that transitioning from a conventional sum-based
KL divergence loss to a token-averaged KL loss,
combined with gradient clipping (Pascanu et al.,
2013), not only stabilizes training but also yields su-
perior performance. This revised methodology re-
sults in a student model that significantly improves
upon its baseline and even slightly outperforms
its larger teacher on in-distribution validation data,
verifying a path for effective, low-resource LLM
compression.

2 Related Work

Our work builds upon established concepts in
model compression, particularly knowledge dis-
tillation and quantization.

Knowledge Distillation. Knowledge distillation
(KD) is a model compression paradigm where a
compact "student" model is trained to mimic the be-
havior of a larger, more powerful "teacher" model
(Hinton et al., 2015). The goal is to transfer the gen-
eralized "dark knowledge" from the teacher, which
is encoded in its output probability distributions,
rather than just learning from hard labels in the data.
This allows the student to achieve significantly bet-
ter performance than if it were trained on the same
data from scratch.

White-box vs. Black-box Distillation. KD ap-
proaches can be broadly categorized based on the
accessibility of the teacher model. In white-box dis-
tillation, the student has full access to the teacher’s
internal components, including its parameters, hid-
den states, and, most commonly, the pre-softmax
logits. This allows for direct alignment of the stu-
dent’s and teacher’s output distributions using met-
rics like KL divergence, as proposed by Hinton et al.
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(2015). Other white-box methods, such as Tiny-
BERT (Jiao et al., 2020), go further by matching
intermediate hidden states and attention matrices to
provide a richer training signal. Our work falls into
this category, as we directly utilize the teacher’s
logits.

In contrast, black-box distillation is employed
when the teacher model is only accessible via an
API, exposing only its final predictions (e.g., the
generated text) and not the underlying probability
distributions. In this setting, a common approach is
to create a synthetic dataset by querying the teacher
with a set of prompts and then using the teacher’s
high-quality outputs as target labels to fine-tune
the student model (Wang et al., 2022). This is
essentially supervised fine-tuning on the teacher’s
generated data, without access to the soft targets
that characterize white-box KD.

Quantization and Efficient Fine-Tuning.
Alongside KD, quantization is another critical
technique for reducing the memory footprint and
computational cost of LLMs (Gholami et al.,
2022). It involves representing model weights
and activations with lower-precision data types,
such as 4-bit integers. Our work leverages 4-bit
quantization for both the teacher and student
models. Specifically, we use QLoRA (Dettmers
et al., 2023), a parameter-efficient fine-tuning
method that allows for training a quantized model
by attaching small, trainable LoRA adapters (Hu
et al., 2021). This combination of KD and QLoRA
forms the foundation of our resource-efficient
pipeline.

3 Methodology

3.1 Dataset and Preprocessing

We utilize the yahma/alpaca-cleaned dataset,
which is derived from the self-instruct method
(Wang et al., 2022). For our primary experi-
ments, we train on the first 5% of the dataset
(train[:5%]) and validate on the subsequent 1%
(train[5%:6%]). Instruction-following examples
are formatted by concatenating the instruction
and input fields to form the prompt. The model is
trained to predict the output field, followed by an
end-of-sentence (EOS) token. We apply standard
causal language modeling masking, where loss is
not computed for prompt tokens (labels set to -100).
For qualitative evaluation, we use the model’s chat
template to generate only the assistant’s response.

3.2 Models and Quantization
• Teacher Model: Qwen/Qwen2.5-3B-Instruct.

Used in inference mode with 4-bit NormalFloat
(NF4) quantization via the bitsandbytes library
(Dettmers et al., 2022).

• Student Model: Qwen/Qwen2.5-0.5B-Instruct.
Trained using QLoRA (Dettmers et al., 2023)
with 4-bit base model quantization. LoRA
adapters (Hu et al., 2021) are configured with
rank r = 16, scaling factor α = 32, and a
dropout rate of 0.05.

To conserve memory, gradient checkpointing is en-
abled (Chen et al., 2016), and the key-value cache
(use_cache) is disabled during training.

3.3 Objective Function: Token-Averaged
Knowledge Distillation

Our loss function combines the standard cross-
entropy (CE) loss on ground-truth labels with a
KL divergence loss that encourages the student to
match the teacher’s probability distribution. The
total loss L is a weighted sum:

L = λCE · LCE + λKD · LKD

By default, we set the weights λCE = λKD = 0.5.
The cross-entropy loss, LCE, is the standard

objective for language model training, calculated
between the student’s predicted logits zS and the
one-hot ground-truth labels y:

LCE = CrossEntropy(y, zS)

The knowledge distillation loss, LKD, uses tem-
perature scaling (T > 1) to soften the probability
distributions from both teacher and student logits
(zT , zS). This prevents the student from focusing
only on the single most likely token and encourages
it to learn the richer relational information present
in the teacher’s full distribution. Following Hinton
et al. (2015), the loss is defined as:

LKD = T 2 ·KL (σ(zT /T ) ∥ σ(zS/T ))

where σ is the softmax function. The T 2 factor
ensures that the gradient magnitudes from the dis-
tillation loss remain comparable to the original gra-
dients as temperature changes. We use T = 2.0.

A crucial implementation detail is the reduction
method. Our revised pipeline computes the KL
divergence for each token and then averages the
loss over all valid (non-masked) tokens in a batch.



This contrasts with a sum-based reduction, which
can lead to unstable gradients and makes the loss
scale dependent on sequence length and batch com-
position. Token-averaging provides a more stable
and interpretable loss signal.

3.4 Optimization
We use the memory-efficient paged_adamw_8bit
optimizer (Dettmers et al., 2023) with a learning
rate of 2 × 10−4. We train for three epochs on
the 5% data split. To accommodate memory limi-
tations, we use gradient accumulation and a max-
imum sequence length of 512. For stability, we
apply gradient clipping with a maximum norm of
0.5, which prevents exploding gradients that can
occur during training (Pascanu et al., 2013).

4 Experiment 1

4.1 Experimental Setups
We compare two primary configurations to isolate
the effect of our methodological improvements:

Baseline (Sum-KL) Our initial setup using a sum-
based reduction for the KL divergence loss,
without gradient clipping.

Proposed (Avg-KL) Our revised pipeline, which
employs token-averaged KL loss and adds gra-
dient clipping with a max norm of 0.5. All
other parameters (models, data, optimizer) are
held constant.

4.2 Training Dynamics
Both models converged, but the proposed setup
with token-averaged loss exhibited more stable
training dynamics. As shown in Figure 1, the loss
curve is smoother. Figure 2 separately tracks the
cross-entropy and KL divergence components of
the loss, which is made possible by the well-scaled,
token-averaged objective. This fine-grained log-
ging is critical for diagnosing training and compar-
ing different runs.

4.3 Quantitative Evaluation
We evaluated the student model before and after
distillation, along with the teacher model, on the
held-out validation set. Table 1 summarizes the
results.

The student model trained with our proposed
pipeline achieves a final perplexity of 4.085. This
represents a 25.8% reduction compared to its pre-
distillation baseline (PPL 5.504). Remarkably, the

Figure 1: Total training loss versus steps, smoothed with
a 10-step rolling average. The proposed (Avg-KL) run
shows a stable descent.

Figure 2: Component-wise loss traces for the proposed
run, showing the token-averaged CE and KL losses over
training steps.

0.5B student not only surpasses the performance
of the student from the baseline (Sum-KL) run but
also achieves a 3.3% lower perplexity than the 3B
teacher model on this specific data slice.

Table 1: Validation metrics on the held-out data slice
(train[5%:6%]). The proposed Avg-KL run yields the
best student performance.

Configuration Model Loss (↓) Perplexity (↓)

Baseline
(Sum-KL)

Student
(pre-KD) 1.7055 5.5044

Student
(post-KD) 1.5371 4.6513

Teacher (3B) 1.4410 4.2250

Proposed
(Avg-KL)

Student
(pre-KD) 1.7055 5.5044

Student
(post-KD) 1.4070 4.0850

Teacher (3B) 1.4410 4.2250

4.4 Qualitative Analysis

A qualitative comparison of model outputs (Ap-
pendix A) reveals that the distilled student from
the proposed run generates more concise and well-
structured responses than its pre-distillation coun-
terpart, often matching or improving upon the
quality of the teacher’s responses for the selected
prompts.



5 Experiment 2: Grid Search on
Distillation Hyperparameters

Goal. We perform a small but informative
grid search to identify a stable recipe under
tight memory: we vary the distillation temper-
ature T ∈ {1.5, 2.0}, the CE weight λCE ∈
{0.3, 0.5}, learning rate LR ∈ {1e−4, 2e−4},
and the maximum sequence length {256, 512}.
LoRA rank is fixed at r = 16. The stu-
dent is Qwen2.5-0.5B-Instruct with QLoRA
(4-bit); the teacher is Qwen2.5-3B-Instruct
(4-bit inference). We train for 3 epochs on
yahma/alpaca-cleaned train[:5%] and vali-
date on train[5%:6%].

5.1 Grid and Naming
To maximize readability, each run is identified by
an ID A1–A6. Detailed hyperparameters are pro-
vided in Table 2.

Table 2: Experiment 2 grid (A1–A6) and their hyperpa-
rameters.

ID T λCE LR Seq LoRA r

A1 1.5 0.3 2×10−4 256 16
A2 2.0 0.3 2×10−4 512 16
A3 1.5 0.5 2×10−4 256 16
A4 2.0 0.5 2×10−4 512 16
A5 2.0 0.5 1×10−4 512 16
A6 1.5 0.3 1×10−4 512 16

5.2 Evaluation Metrics and Leaderboard
We report validation loss (NLL) and perplexity
(PPL) for teacher, student before KD (pre), and stu-
dent after KD (post). Table 3 summarizes the six
runs; Figure 3 visualizes teacher vs. post-student.

Table 3: Experiment 2 results on the held-out split.
Lower is better.

ID Student (pre) Student (post) Teacher

Loss PPL Loss PPL Loss PPL

A1 1.7807 5.9338 1.4215 4.1433 1.5263 4.6009
A2 1.6940 5.4411 1.4151 4.1168 1.4215 4.1432
A3 1.7807 5.9338 1.4081 4.0883 1.5263 4.6009
A4 1.6940 5.4411 1.3972 4.0438 1.4215 4.1432
A5 1.6939 5.4408 1.3930 4.0270 1.4215 4.1432
A6 1.6939 5.4408 1.3952 4.0359 1.4215 4.1432

5.2.1 Analysis of Hyperparameter Effects
Our grid search reveals a clear hierarchy of influ-
ence. Configuration A5 achieved the best perfor-
mance (PPL 4.0270), and the analysis below details

(a) Teacher vs. Student loss.

(b) Teacher vs. Student perplexity.

Figure 3: Leaderboard-style comparison across configu-
rations (A1-A6).

the effects of each key hyperparameter based on
the results in Table 3.

Sequence Length. The maximum sequence
length was the most impactful factor. Configu-
rations with a sequence length of 512 (A2, A4, A5,
A6) consistently outperformed those with 256 (A1,
A3), as shown in Figure ??b. This suggests that a
larger context window is crucial for the student to
learn nuanced distributions from the teacher.

Learning Rate. A lower learning rate of 1×10−4

demonstrated more stable and superior perfor-
mance compared to 2 × 10−4. Runs A5 and A6,
both using the lower LR, yielded the best two per-
plexity scores. This indicates that a more cautious
update step is beneficial in this quantized distilla-
tion setup.

Temperature and CE Weight. The effects of
distillation temperature (T ) and the cross-entropy
weight (λCE) were more subtle. While the optimal
run used T = 2.0 and λCE = 0.5, the performance
differences across their respective settings were
marginal. This suggests the pipeline is robust to
small variations in these two parameters.

Optimal Recipe. In summary, the optimal and
most robust recipe identified by our search is: a
long sequence length (512), a low learning rate



(1 × 10−4), a moderate temperature (T = 2.0),
and a balanced loss weight (λCE = 0.5).

6 Discussion

The Importance of Loss Normalization and Sta-
bility. Our results underscore the critical role of
proper loss formulation in knowledge distillation.
By averaging the KL divergence loss per token, we
decouple the loss magnitude from the number of
valid tokens in a batch. This normalization makes
the optimization process more stable. Combined
with gradient clipping, this approach creates a ro-
bust training regime.

On Surpassing the Teacher. The observation
that a student model can outperform its teacher is
a known phenomenon in KD (Yuan et al., 2020),
sometimes referred to as "self-purification" or noise
reduction. The distillation process can act as a reg-
ularizer, forcing the student to learn a more com-
pressed and potentially more generalized represen-
tation. However, it is crucial to note that this outper-
formance was observed on a small, in-distribution
validation set.

7 Future Work and Ablations

This work establishes a solid baseline. We propose
the following directions for future investigation:

• Data Scaling: Systematically increase the train-
ing data from 5% to 100% of the Alpaca dataset.

• Hyperparameter Sweep: Conduct a detailed
ablation study on the KD temperature T and the
cross-entropy weight λCE.

• Architectural Choices: Evaluate the trade-offs
between LoRA rank and maximum sequence
length.

• Intermediate Representation Distillation:
Augment the logit-based KD with an auxiliary
loss that matches intermediate hidden states,
inspired by methods like TinyBERT (Jiao et al.,
2020).

8 Conclusion

We have presented a stable and resource-efficient
pipeline for knowledge distillation, successfully
compressing a 4-bit 3B teacher model into a 4-
bit 0.5B student model. Our key finding is that
employing a token-averaged KL divergence loss
with gradient clipping is markedly superior to a

sum-based approach, leading to a significant 25.8%
reduction in perplexity. The resulting 0.5B model
demonstrated performance that slightly exceeded
its 3B teacher on an in-distribution validation set.
This work provides a practical and reproducible
recipe for creating powerful, lightweight language
models.
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Appendix

A Reproducibility Checklist

• Hardware: Single NVIDIA P100 GPU for 2-3
Hours (T4/3060/4060 class or equivalent).

• Quantization: Teacher with 4-bit inference; Stu-
dent with 4-bit QLoRA.

• Data: yahma/alpaca-cleaned, with specified
train/validation splits.

• Optimizer: paged_adamw_8bit with LR ≈ 2×
10−4.

• Distillation Parameters: Temperature T ≈ 2.0;
Loss weights λCE, λKD ≈ 0.5.

• Key Flags: Gradient checkpointing enabled;
use_cache=false during training.

• Loss Reduction: KL divergence must be aver-
aged per token.

• Stability: Gradient clipping with max norm ≈
0.5.

B Use of AI-Based Tools

This appendix documents the use of artificial intel-
ligence (AI)-based tools in the preparation of this
academic work.

List of Steps Involving AI-Based Tools

• DeepSeek: I consulted DeepSeek models to
learn more formal organization of an con-
clusion chapter. The suggested frameworks
were adapted and rewritten entirely in my own
words.

• QuillBot: QuillBot was used sparingly to
rephrase sentences for improved readability
and flow. All suggestions were manually re-
viewed and edited to ensure alignment with
my original intent and academic style.

• DeepL and Youdao Translation: DeepL and
Youdao Translation assisted in translating a
small number of technical terms and short
phrases from Chinese to English to clarify
meaning during drafting. These translations
were verified and incorporated into my own
text.
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