
Hierarchical Character-level Language Model Re-implementation

Zhaokun Wang
Institute of Computational Linguistics

Heidelberg University, Heidelberg, Germany
zhaokun.wang@stud.uni-heidelberg.de

Abstract

The Hierarchical Character-level Lan-
guage Model with a Continuous Cache
(HCLM+Cache) addresses open-vocabulary
modeling by combining character-level
generation with a memory of recent words.
This paper describes a re-implementation
of the model in PyTorch and an analysis
of its behavior. Our initial implementation
showed two limitations: sequential processing
that restricted computational parallelism and
cache resets that interrupted long-range reuse.
By introducing vectorized computation and
continuous cache management, we obtained
improvements in both efficiency and predictive
performance on the WikiText-2 benchmark.
Building on the optimized implementation,
we conducted an ablation study to assess the
contributions of the hierarchical structure and
the continuous cache. The results indicate that
the cache plays a central role. We provide
these findings as a reference for future work on
reproducing and extending complex stateful
language models.1

1 Introduction

Natural language is marked by an ever-growing
vocabulary and the “bursty” reuse of rare words,
where the first mention of a token increases its like-
lihood of reappearing (Heaps, 1978; Church and
Gale, 1995; Church, 2000). Conventional word-
level language models, which operate with a fixed
vocabulary, sidestep this challenge by mapping un-
seen items to an <unk> token (Mikolov et al., 2010).
While effective in some applications, such mod-
els cannot generate new strings and fail to capture
burstiness.

Character-level models (Sutskever et al., 2011;
Graves, 2013) solve the open-vocabulary problem
by composing words from characters. However,

1Codes are publicly available at https://github.com/
BufferHund/HierarchicalCharLM_Reimplementation

they lack an explicit mechanism for reusing pre-
viously generated words. Subword segmentation
(Sennrich et al., 2016) and compositional encoders
(Ling et al., 2015; Kim et al., 2016) partially allevi-
ate this, but none directly address short-term rep-
etition. Neural caches (Grave et al., 2017; Merity
et al., 2017) provide such a mechanism for closed
vocabularies by biasing predictions toward recently
seen tokens.

To combine these strengths, Kawakami et al.
(2017) introduced the Hierarchical Character-
level Language Model with a Continuous Cache
(HCLM+Cache). This model generates novel
words at the character level while dynamically
copying previously produced words through a
pointer-based cache, yielding consistent gains
across English and multilingual benchmarks.

Motivated by this design, we re-implemented
the model, but our initial attempt yielded subopti-
mal results. This paper presents our work in two
parts. First, as a case study, we document the crit-
ical performance bottlenecks our implementation
faced and show how resolving them leads to a func-
tional, efficient model. Second, using this opti-
mized model, we conduct an ablation study to dis-
sect the contributions of the hierarchical structure
versus the continuous cache. Our goal is to move
beyond simple reproduction to a deeper understand-
ing of why the model works, offering both practical
engineering insights and a clearer scientific analy-
sis of its components.

2 Model Architecture and
Implementation Logic

This section provides a detailed breakdown of our
PyTorch implementation, following the conceptual
design in (Kawakami et al., 2017). To orient the
reader, we begin with a simplified pipeline diagram
(Figure 1) that captures the overall flow, and then
explain each component in turn. Detailed architec-

https://github.com/BufferHund/HierarchicalCharLM_Reimplementation
https://github.com/BufferHund/HierarchicalCharLM_Reimplementation


ture diagrams are provided in the Appendix.

2.1 Simplified Pipeline Overview

Figure 1 illustrates the main idea: words are rep-
resented through character-level composition, con-
textualized in a word-level sequence model, and
then either generated afresh or retrieved from mem-
ory through a cache mechanism. This high-level
view shows how the two pathways—generation and
reuse—are integrated through a gating function.

2.2 Overall Architecture

The model combines a hierarchical language model
(HCLM) with a pointer cache. The HCLM ac-
counts for character-to-word generation, while the
cache provides a distribution over recently seen
words. At each time step, the two are interpolated
using a dynamic gate λt, as expressed in Equa-
tion 1:

p(wt|w<t) = λt plm(wt|w<t)+(1−λt) pptr(wt|w<t)
(1)

The result is a system that can flexibly switch be-
tween inventing new forms and reusing known
ones. A full architectural diagram is given in the
Appendix (Figure 3).

2.3 Hierarchical Language Model (HCLM)

The HCLM spans two levels of granularity: char-
acters and words. At the lower level, a character
encoder composes embeddings into a word repre-
sentation that generalizes beyond the training vo-
cabulary. At the higher level, a word-level LSTM
integrates these embeddings into a contextual state
sequence, hctx

t , which serves as the main driver
for prediction. Finally, a character decoder recon-
structs the next word given this context. The di-
agrams of these components are provided in the
Appendix (Figures 4–6).

2.4 Continuous Cache

Running in parallel with the HCLM is a memory
mechanism. The cache stores pairs of context vec-
tors and their corresponding words, updating keys
whenever a word is reused. When predicting the
next token, the current context attends over stored
keys, yielding a probability distribution over words
in memory. This equips the model with a direct
copy pathway, particularly effective for repeated
tokens and discourse-specific names. The cache
mechanism is illustrated in Appendix Figure 7.

2.5 Gating Mechanism

The two pathways are combined through a small
feed-forward network that computes λt from hctx

t .
This gate dynamically balances novelty and mem-
ory, unifying the HCLM and cache into a single
probability distribution. An example of this integra-
tion can be seen in the overall architecture diagram
in the Appendix (Figure 3).

3 Experimental Analysis of the Initial
Implementation

3.1 Experimental Setup

The first experiment (Run 1) was designed as a
baseline to verify the logical correctness of our re-
implementation. To enable rapid prototyping and
debugging, we employed a compact configuration
on the wikitext/wikitext-2-raw-v1 dataset:

• Batch Size: 64
• Word Context Length (S): 10
• Hidden Dimensions (Hw, Hc): 256
• Cache Size: 800
• Epochs: 5

This setting prioritized implementation validation
over modeling capacity, and thus served as a con-
trolled environment to assess whether the archi-
tecture could begin to capture coherent linguistic
patterns.

3.2 Quantitative and Qualitative Results

After five epochs, the baseline model achieved a
best validation Bits-Per-Character (BPC) of 2.0721.
Although training loss decreased steadily, the val-
idation curve plateaued early, suggesting that the
model was unable to generalize beyond local token
statistics.

A closer look at the generated sequences con-
firms this limitation. For instance, at Epoch 3 the
model produced the following continuation given
the seed prompt *“what is the difference between”*
(Appendix A):

Generated Sample (Run 1, Epoch 3):
“by the . causes front time and ’s owl
from Maryan and read Series inHg a also
the to . the 13 Jupiter , northeast 4 wines
within has”

Similarly, by Epoch 5, the outputs remained in-
coherent, filled with malformed tokens and erratic
topic shifts:



Figure 1: Simplified pipeline overview: from character input to the final mixed probability distribution.

Generated Sample (Run 1, Epoch 5):
“83 up Jordan hundred up , Sport bridge
triple Way about assassinat . renewed
in has line the Japanese excess holiday
1999 many the rans study of being to
known”

These examples illustrate three recurrent failure
modes: (i) grammatical breakdown, (ii) semantic
drift with inconsistent topics, and (iii) spurious
named-entity fragments (e.g., “Jupiter”, “Japanese
excess holiday 1999”). Together with the quanti-
tative stagnation, these samples demonstrate that
the baseline model struggled to acquire meaningful
long-range linguistic structure.

3.3 Identification of Performance Bottlenecks

The poor results can be traced to two fundamental
flaws in the initial implementation.

Computational Inefficiency. The forward pass
was realized with nested Python for loops, pro-
cessing each token in the batch sequentially (Al-
gorithm 1). This design prevented effective use
of GPU parallelism, resulting in very low through-
put (approx. 3,100 tokens/sec). Consequently, the
model could not be trained on sufficient data to
reach convergence.

Discontinuous Cache State. The cache was reset
at the beginning of every training batch. This de-
sign choice interrupted the continuity of the cache
memory and hindered the model’s ability to reuse
words across segment boundaries. As a result,
the cache component failed to contribute, and the
model was forced to rely almost exclusively on the
generative decoder, yielding a higher BPC.

In summary, the baseline experiment veri-
fied that the re-implementation ran correctly
but revealed critical computational and state-
management limitations that prevented the model
from learning coherent linguistic structure. These

Algorithm 1 Word-by-Word Forward Pass Logic
in Initial Implementation (Run 1)

1: Input: Batch of word strings ‘B‘ of shape ‘[B,
L]‘

2: ‘cache.reset()‘ ▷ Flaw 2: State discontinuity
3: ‘totalnll‘← 0
4: for t from 0 to L− 1 do
5: for b from 0 to B − 1 do ▷ Flaw 1:

Sequential processing
6: hb,t ← Context[b, t]
7: log plm ← Decoder(hb,t, wb,t)
8: log pptr ← Cache(hb,t, wb,t)
9: λ← Gate(hb,t)

10: ‘totalnll‘+ = MixtureLoss(...)
11: ‘cache.write‘(hb,t, wb,t)

12: return ‘totalnll‘

findings motivated the optimizations described in
the next section.

4 Iterative Optimization and
Comparative Experiments

4.1 Implemented Improvements

The diagnosis of Run 1 highlighted two
implementation-level flaws: inefficient sequential
computation and discontinuous cache management.
In Run 2, we introduced targeted refinements to
address these bottlenecks.

Vectorized Computation. The forward pass was
refactored to eliminate explicit Python loops. By
reshaping the input tensor from (B,S, Lc) to (B×
S,Lc), we enabled fully parallelized batch oper-
ations within the character encoder, substantially
improving hardware utilization.

Continuous Cache State. We redesigned cache
management so that the cache persists across
batches within each epoch, stored directly in GPU
memory. This eliminated redundant resets and al-



lowed the model to exploit longer-range dependen-
cies across segment boundaries.

4.2 Comparative Results and Analysis
The optimized model demonstrated clear quantita-
tive and qualitative improvements. As summarized
in Table 1, Run 2 achieved a best validation BPC
of 1.8267, representing an 11.8% relative reduc-
tion compared to Run 1. Training throughput in-
creased from∼3.1k to∼11.7k tokens/sec, a≈3.8×
speedup. Figure 2 further illustrates the faster con-
vergence and lower validation BPC.

Table 1: Performance comparison between baseline
(Run 1) and optimized (Run 2).

Metric Run 1 Run 2 Improvement

Best Val BPC 2.0721 1.8267 11.8%
char-PPL 4.20 3.54 15.7%
Throughput ≈3.1k ≈11.7k ≈3.8×

(a) Training loss per epoch.

(b) Validation BPC per epoch (lower is better).

Figure 2: Comparison of training loss and validation
BPC for the initial (Run 1) and optimized (Run 2) ex-
periments. The optimized run shows significantly faster
convergence to a much better result.

The qualitative difference is even more striking.
Whereas Run 1 never produced coherent contin-
uations (see Appendix A), Run 2 began to form
recognizable syntactic and semantic structures as
early as Epoch 2. For example (Appendix A, Run 2
Epoch 2):

Generated Sample: “arthed but , from
, in is and more parties . Wefer , dydes
, about making , as and cemett as , with
Fine Manager in , in”

Although still partially incoherent, this output
already shows more consistent word boundaries
and named entities than the baseline. By peak per-
formance, Run 2 produced fluent and contextually
appropriate continuations:

Generated Sample (Run 2 peak):
“what is the difference between the two
films , but it is not a direct sequel . It is
a remake of the 1984 film of the same
name . The film was released on”

This progression confirms that the optimized im-
plementation not only accelerated training but also
unlocked the model’s ability to capture higher-level
linguistic patterns.

4.3 Summary
Together, these results demonstrate that correcting
implementation inefficiencies can yield substantial
improvements in both speed and quality. The opti-
mized Run 2 provides a solid foundation for further
investigation, motivating the ablation study in the
following section.

5 Ablation Study

5.1 Experimental Setup
Having established the optimized implementation
(Run 2), we ablated the two key components on the
WikiText-2 validation set:

• HCLM + Cache: full optimized model.
• No-Cache: cache and gating disabled (λt ≡
1).

• No-Hierarchy: non-hierarchical character-
level LSTM baseline.

5.2 Results and Analysis
Table 2 shows that the cache is pivotal. Removing
it degrades best-val BPC from 2.0721 to 2.2780
(∼9.9% relative), indicating that explicit reuse
of recently seen words drives most of the accu-
racy gains. Notably, No-Cache performs on par
with No-Hierarchy (2.2780 vs. 2.2741), imply-
ing that the hierarchical word–character structure
contributes little in isolation without a reuse mech-
anism. This pattern aligns with prior observa-
tions on cache-augmented open-vocabulary LMs,



where improvements are primarily attributed to
modeling bursty reuse rather than hierarchy per
se (Kawakami et al., 2017).

From an efficiency standpoint, No-Cache and
No-Hierarchy are ∼2.4–2.7× faster than the full
model, reflecting the overhead of cache opera-
tions. Thus, the cache introduces a clear accu-
racy–throughput trade-off.

Table 2: Ablation study results. Throughput is in to-
kens/sec.

Model Configuration Best Val BPC char-PPL Throughput

HCLM + Cache 2.0721 4.20 ≈5.0k
No-Cache 2.2780 4.85 ≈12.2k
No-Hierarchy 2.2741 4.83 ≈13.5k

5.3 Summary

The ablation indicates that gains in our setting are
dominated by the cache’s ability to model short-
term lexical reuse, while hierarchy alone offers
negligible benefit. Future work should therefore
prioritize more efficient cache designs (to reduce
overhead) before deepening hierarchical structure.

6 Discussion

Our experiments show that the gap between the ini-
tial and optimized implementations stemmed not
from the model’s architecture, but from overlooked
implementation details. Sequential computation
limited data throughput, while resetting the cache
at each batch prevented learning long-range de-
pendencies. Once corrected, the same architecture
achieved both faster training and substantially bet-
ter generalization. The ablation study further con-
firmed that the cache mechanism, rather than hier-
archical modeling alone, was the dominant source
of improvement.

These results highlight a broader point: in mod-
ern neural models, “implementation choices” are
inseparable from “model design.” Efficient use of
parallel hardware and careful state management
are prerequisites for architectures to function as
intended. For reproducibility studies, this case il-
lustrates how small implementation decisions can
decisively affect the conclusions drawn about a
model’s effectiveness.

7 Conclusion and Future Work

We presented a systematic reproduction and analy-
sis of the HCLM+Cache model. Our study revealed

that the poor performance of the initial implementa-
tion was due not to the architecture itself, but to two
overlooked design choices: sequential computation
and discontinuous cache state. Correcting these
bottlenecks through vectorization and continuous
cache management led to substantial improvements
in both efficiency and accuracy, reducing valida-
tion BPC by 11.8%. An ablation study further
showed that the cache mechanism is the dominant
contributor to the model’s gains, while hierarchical
structure alone provides little benefit.

This work highlights that implementation fidelity
is inseparable from model design, and that small
coding choices can profoundly affect reproducibil-
ity.

Future Work. Building on these insights, future
directions include:

• Extending state continuity beyond epochs, en-
abling document-level modeling.

• Exploring more efficient cache mechanisms
to reduce overhead while preserving accuracy.

• Applying advanced regularization and opti-
mization strategies to further improve gener-
alization.



References
Kenneth W. Church. 2000. Empirical estimates of adap-

tation: the chance of two noriegas is closer to p/2
than p2. In Proceedings of COLING, pages 180–186.

Kenneth W. Church and William A. Gale. 1995. Poisson
mixtures. Natural Language Engineering, 1(2):163–
190.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017. Improving neural language models with a
continuous cache. In Proceedings of ICLR.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Harold S. Heaps. 1978. Information Retrieval: Compu-
tational and Theoretical Aspects. Academic Press.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom.
2017. Learning to create and reuse words in open-
vocabulary neural language modeling. In Proceed-
ings of ACL, pages 1492–1502.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural language
models. In Proceedings of AAAI, pages 2741–2749.

Wang Ling, Tiago Luis, Luis Marujo, Ramon Fernandez
Astudillo, Silvio Amir, Chris Dyer, Alan W. Black,
and Isabel Trancoso. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of EMNLP,
pages 1520–1530.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proceedings of ICLR.

Tomas Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Proc.
Interspeech, pages 1045–1048.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of ACL, pages 1715–
1725.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of ICML, pages 1017–1024.

Appendix

A Reproducibility Checklist

• Code/Logs/Figures: raw logs and parsed
CSVs; figures in this paper (train_loss_
compare.png, val_bpc_compare.png, val_
char_ppl_compare.png).

• Data: wikitext/wikitext-2-raw-v1 from Hug-
gingFace.

• Configs: Run-A (smaller model/horizon),
Run-B (larger model, longer horizon); details
in logs.

• Hardware: NVIDIA P100 GPU from Kag-
gle; eager+AMP (no torch.compile).

• Randomness: Fixed seeds per run; multi-
seed aggregation planned.

B Use of AI-Based Tools

This appendix documents the use of artificial intel-
ligence (AI)-based tools in the preparation of this
academic work.

List of Steps Involving AI-Based Tools
• DeepSeek: I consulted DeepSeek models to

learn more formal organization of the con-
clusion and appendix chapter. The suggested
frameworks were adapted and rewritten en-
tirely in my own words. I also referred to
DeepSeek during debugging to understand
and resolve specific error messages.

• QuillBot: QuillBot was used sparingly to
rephrase sentences for improved readability
and flow. All suggestions were manually re-
viewed and edited to ensure alignment with
my original intent and academic style.

• DeepL and Youdao Translation: DeepL and
Youdao Translation assisted in translating a
small number of technical terms and short
phrases from Chinese to English to clarify
meaning during drafting. These translations
were verified and incorporated into my own
text.

C Supplementary Figures

For completeness, we provide additional diagrams
of the HCLM submodules and the cache mech-
anism that were omitted from the main text for
brevity.



Figure 3: Full architecture of the HCLM with cache.

Figure 4: Character encoder module.

Figure 5: Word-level context encoder module.



Figure 6: Character decoder module.

Figure 7: Pointer cache mechanism.


	Introduction
	Model Architecture and Implementation Logic
	Simplified Pipeline Overview
	Overall Architecture
	Hierarchical Language Model (HCLM)
	Continuous Cache
	Gating Mechanism

	Experimental Analysis of the Initial Implementation
	Experimental Setup
	Quantitative and Qualitative Results
	Identification of Performance Bottlenecks

	Iterative Optimization and Comparative Experiments
	Implemented Improvements
	Comparative Results and Analysis
	Summary

	Ablation Study
	Experimental Setup
	Results and Analysis
	Summary

	Discussion
	Conclusion and Future Work
	Reproducibility Checklist
	Use of AI-Based Tools
	Supplementary Figures

