Exploring the K-Adapter Framework

Zhaokun Wang
Institute of Computational Linguistics
Heidelberg University, Heidelberg, Germany
zhaokun.wang@stud.uni-heidelberg.de

Abstract

This report presents an exploration of the K-
Adapter framework, combining a brief review
with an external evaluation of its parameter ef-
ficiency, transferability, and deployment trade-
offs. We reproduce and extend prior results on
OpenEntity and FIGER, showing that factual
adapters outperform baselines but offer lim-
ited zero-shot transfer. Through ablation ex-
periments, we find that adapter performance
is largely insensitive to size and internal com-
plexity but highly sensitive to insertion posi-
tion, with middle-layer placement proving most
effective. We also show that adapter-tuning
matches full fine-tuning accuracy with far fewer
trainable parameters, albeit with modest la-
tency and memory overhead. Finally, pretrain-
ing on large-scale, general-purpose knowledge
sources yields far stronger transfer than small,
task-specific datasets. These findings provide
practical guidelines for building parameter-
efficient, knowledge-enhanced language mod-
els.!

1 Introduction

Pre-trained Language Models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have transformed natural language pro-
cessing, yet they often struggle to reliably store and
retrieve structured knowledge. For instance, a base
PLM may fail to consistently infer a person’s pro-
fession from their workplace when such informa-
tion is not explicitly present in its training corpus.
Early approaches like ERNIE (Zhang et al., 2019)
and KnowBERT (Peters et al., 2019) addressed
this by fine-tuning the entire model on knowledge-
infusion tasks. However, this monolithic strategy
is parameter-inefficient, risks catastrophic forget-
ting, and produces entangled representations that
are difficult to update or interpret.

'Codes are publicly available at https://github.com/
BufferHund/K-Adapter_SemesterProject

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods offer a compelling alternative. By freezing the
backbone PLM and only training a small number
of additional parameters, methods like Adapters
(Houlsby et al., 2019), LoRA (Hu et al., 2022),
and Prefix-Tuning (Li and Liang, 2021) achieve
strong performance with a fraction of the train-
ing cost. The K-Adapter framework (Wang et al.,
2020) specifically applies this modular philosophy
to knowledge infusion, decoupling knowledge from
the backbone model. It introduces external "knowl-
edge adapters" that can be independently trained
and plugged into a frozen PLM.

While the original K-Adapter work established
its effectiveness, many practical questions about
its design and behavior remain unanswered. Key
design choices—such as the adapter’s size, its in-
ternal complexity, and its placement within the
PLM——can critically impact both performance and
efficiency, yet these have not been systematically
studied. Furthermore, the framework’s zero-shot
transferability and the true cost of its deployment
in terms of latency and memory are not fully un-
derstood.

To address these gaps, this project presents an
empirical study of the framework. We examine the
influence of architectural hyperparameters, evalu-
ate its zero-shot transferability and inference trade-
offs, and analyze how different pre-training data
sources affect downstream performance. Our re-
sults aim to provide practical insights that may help
guide the effective and efficient use of K-Adapters.

2 Background: The K-Adapter
Framework

2.1 Architecture and Method

K-Adapter maintains a frozen RoBERTa-Large
backbone while introducing external adapter mod-
ules alongside it. Each adapter specializes in a
particular type of knowledge and is trained inde-

https://github.com/BufferHund/K-Adapter_SemesterProject
https://github.com/BufferHund/K-Adapter_SemesterProject

pendently on a corresponding pre-training task. For
instance, the factual adapter employs a relation-
classification objective built from a filtered T-REx
alignment of Wikipedia text and Wikidata triples.
The linguistic adapter is trained on dependency-
relation prediction using a parsed subset of Book-
Corpus.

Architecturally, each adapter comprises projec-
tion layers bracketing a small stack of Transformer
layers with skip connections and concatenation
to the backbone’s hidden states. During down-
stream fine-tuning, the outputs of the backbone
and selected adapters are concatenated and passed
into task-specific heads for classification or span
prediction. This design naturally supports contin-
ual knowledge infusion: adding new knowledge
merely involves introducing another adapter with-
out retraining the backbone or existing adapters.

3 Experimental Setup

3.1 Tasks and Datasets

We evaluate K-Adapter on two standard entity typ-
ing datasets:

* OpenEntity (Choi et al., 2018), which fea-
tures a mix of coarse- and fine-grained entity
types. Performance is measured using F1-
A (all mentions) and F1-B (mentions with at
least one fine-grained type).

* FIGER (Ling and Weld, 2012), which con-
tains 113 fine-grained entity types. Per-
formance is measured using Micro-F1 and
Macro-F1 scores.

We also use the TACRED (Zhang et al., 2017) rela-
tion classification dataset as a pre-training source in
one experiment to study the impact of pre-training
data.

3.2 Model and Baselines

Our primary model is RoBERTa-Large (Liu et al.,
2019) with K-Adapters. The baseline configura-
tion is the frozen RoBERTa-Large model with a
trainable classification head, without any adapters.
For efficiency comparison, we also evaluate a fully
fine-tuned RoBERTa-Large model.

3.3 Implementation Details

All experiments followed a consistent training
setup with standard hyperparameter choices. Exper-
iments were run on a single NVIDIA P100 GPU

provided by Kaggle. The factual adapter is pre-
trained on a 1% subset of the original T-REx dataset
due to computational constraints.

4 Experiments and Results

We structure our empirical evaluation into three
parts: first, we assess the baseline fine-tuning per-
formance and zero-shot transferability; second, we
perform a series of ablation studies on the adapter’s
architecture; finally, we analyze its efficiency and
the impact of pre-training data.

4.1 Fine-tuning vs. Zero-shot Transfer

4.1.1 Fine-tuning Performance on OpenEntity

We first fine-tune different adapter configurations
on OpenEntity to establish baseline performance.
As shown in Table 1 and Figure 1, the factual-only
adapter achieves the highest scores (F1-A: 0.762,
F1-B: 0.629), outperforming both the no-adapter
baseline and the linguistic-only adapter. Combin-
ing both adapters via concatenation slightly un-
derperforms the factual-only adapter, while addi-
tive combination performs worse. This confirms
that factual knowledge is most beneficial for this
task and that fine-tuning is necessary to adapt this
knowledge.

Table 1: Test F1 scores on OpenEntity with different
adapter configurations after fine-tuning.

Setup F1-A F1-B
Baseline 0.749 0.579
Linguistic-only 0.755 0.620
Factual-only 0.762 0.629
Fac+Lin (Add) 0.754 0.616
Fac+Lin (Concat) 0.758 0.629

EXP1: Pretrained Adapter Combinations — Test F1 (A/B higher is better)

0.8 0749 0755 0762 0754 0758

0620 0629 0.616 0629
0579

baseline lin_only fac_only fac_linadd fac_lin_concat

0.

~

0,

o

0.

o

I
o
=

0.

W

0.

N]

0.

b

0.

o

- Fl-A F1-B

Figure 1: Test F1-A and F1-B scores on OpenEntity for
different fine-tuned adapter combinations.

4.1.2 Zero-shot Transferability

Next, we evaluated the out-of-the-box performance
of pre-trained adapters without any fine-tuning. As
seen in Figure 2, the results are starkly different.
On OpenEntity, all adapter configurations perform
worse than the RoOBERTa-large baseline, indicat-
ing negative transfer. On FIGER, while the abso-
lute scores are near random guessing, the additive
combination shows a marginal gain over the base-
line. Overall, these experiments demonstrate that
pre-trained adapters do not directly improve
zero-shot performance on these tasks. The knowl-
edge they contain must be unlocked and adapted
via fine-tuning.

EXP2: Zeroshot (Generic) — Test F1-A (higher is better)

0.25 0240

baseline lin_only fac_only fac_lin_add fac_lin_concat

(a) Zero-shot F1-A on OpenEntity.

EXP2: FIGER Zeroshot — Macro vs Micro F1

0.030

0.025

0.020

o015

0.010

0.005

baseline lin_only fac_only

fac_lin_add fac_lin_concat

mmm FIGER MacroF1 mmm FIGER Micro F1

(b) Macro and Micro F1 on FIGER (Zero-shot).

Figure 2: Zero-shot evaluation results.

4.2 Ablation Studies on Adapter Architecture

We conducted a series of ablations to understand
the sensitivity of K-Adapter to its core architectural
hyperparameters.

4.2.1 Impact of Adapter Size

We varied the bottleneck dimension (adapter_size)
from 16 to 768. As shown in Table 2 and Fig-
ure 3, performance is remarkably stable, with F1-A
scores hovering between 0.686 and 0.690. This
demonstrates the high parameter efficiency of the
adapter approach and suggests that for OpenEntity,
a very small adapter is sufficient.

4.2.2 Impact of Insertion Position

We investigated how adapter insertion position in-
fluences performance by placing adapters in early

Table 2: Test F1-A on OpenEntity across different
adapter sizes.

Adapter Size Test F1-A

16 0.690
64 0.686
256 0.690
768 0.688

EXP3: Test F1-A by Adapter Size

0.690 0.686 0.690 0.688

o e o
[

Test F1-A
o o
w s

o
N

o
o

o
°

16 64 256
Adapter Size

Figure 3: Test F1-A by adapter size.

(layers 0-2), middle (10-12), late (21-23), and dis-
persed (0, 11, 22) layers of RoBERTa. The re-
sults in Table 3 show a decisive impact. Placing
adapters in the middle layers yields the best
performance (Micro F1: 0.706), significantly out-
performing all other configurations. In contrast,
late-layer insertion leads to a catastrophic perfor-
mance drop, suggesting that middle layers provide
the ideal mix of low-level features and semantic
abstractions for knowledge injection.

Table 3: Performance on OpenEntity across different
adapter insertion strategies.

Strategy Adapter List Micro F1 Macro F1
Early 0,1,2 0.611 0.456
Middle 10,11,12 0.706 0.585
Dispersed (Baseline) 0,11,22 0.686 0.563
Late 21,22,23 0.389 0.371

4.2.3 Impact of Internal Complexity

Finally, we varied the number of internal Trans-
former layers within the adapter (1, 2, or 4). As
shown in Table 4, this had almost no effect on per-
formance. The simplest adapter with one layer
performed on par with more complex configura-
tions. This indicates that a simple projection is
sufficient and increasing internal depth brings no
clear benefit for this task.

Table 4: Performance on OpenEntity with varying
adapter internal layers.

Adapter Layers Micro F1 Macro F1
1 (Simpler) 0.689 0.567
2 (Baseline) 0.686 0.563
4 (Deeper) 0.679 0.569

4.3 Efficiency and Pre-training Data Analysis
4.3.1 Parameter and Inference Efficiency

We compared adapter-tuning with full fine-tuning.
While adapter-tuning trains far fewer parameters
(millions vs. hundreds of millions), it introduces
inference overhead. Figure 4 shows that adding
adapters increases latency and GPU memory us-
age. For example, at batch size 1, latency rises by
35% with one adapter and 60% with two. This
highlights the trade-off: adapter-tuning is highly
parameter-efficient for training but incurs a pre-
dictable cost at inference time.

EXP6: Latency vs Batch Size

500 4

400 -

300 4

Latency (ms)

200

100

32

=
o

8

-

Batch Size
—e— Base —®— +Fac —@— +Fac+Lin

EXP6: Peak GPU Memory vs Batch Size

2400 1

2200 1

2000 1

1800 1

Peak GPU Memory (MB)

o
o
o
=3

1400 1

=
o
@

8

|

3
Batch Size
—8— Base —®— +Fac —@— +Fac+lin

Figure 4: Inference latency and GPU memory vs. batch
size.

4.3.2 Impact of Pre-training Data

We compared a factual adapter pre-trained on the
large, general-purpose T-REx dataset with one
pre-trained on the smaller, task-specific TACRED
dataset. As shown in Table 5, the T-REx-trained
adapter achieves a test F1-A of 0.762 (from Exp.

1), while the TACRED-trained adapter only reaches
0.397. Although part of this gap may be attributed
to the limited scale and the additional preprocess-
ing required for TACRED, the results highlight a
broader issue: pre-training on small or mismatched
datasets can significantly hinder knowledge trans-
fer. This finding suggests that adapters built from
insufficient or domain-incompatible corpora are
unlikely to generalize well, underscoring the im-
portance of large, high-coverage and well-aligned
pre-training data.

Table 5: Performance of an adapter pre-trained on the
task-specific TACRED dataset.

Split Precision Recall F1-A
Dev 0.572 0.270 0.367
Test 0.610 0.295 0.397

5 Discussion and Conclusion

This study highlights a hierarchy of design con-
siderations for effective and efficient knowledge
infusion. The results show that an adapter’s per-
formance is primarily affected by two factors: in-
sertion position and the quality of its pre-training
data. In particular, placing adapters in the middle
layers of the PLM tends to yield stronger perfor-
mance, while pre-training on large-scale, general-
purpose knowledge sources is important for suc-
cessful transfer.

At the same time, performance appears relatively
less sensitive to the adapter’s internal architecture;
compact and simple adapters achieve results com-
parable to larger, more complex ones, underscoring
their parameter efficiency. This approach, however,
comes with certain limitations. Adapters gener-
ally require downstream fine-tuning to reach their
full potential, as their zero-shot capability is lim-
ited. They also introduce predictable overhead in
inference latency and memory usage.

Overall, these findings point to practical guide-
lines for practitioners: prioritize middle-layer
placement and high-quality, general pre-training
data, while keeping adapters compact and simple to
maintain efficiency. This modular approach offers
a promising direction for building more knowledge-
able and maintainable language models.

Future work may investigate automated methods
for identifying optimal adapter configurations and
explore more advanced fusion mechanisms.

References

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In ACL, pages
87-96.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL, pages 4171-4186.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-Efficient Transfer Learning for NLP. In
ICML, pages 2790-2799.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained
entity recognition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada. AAAI Press.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew E Peters, Mark Neumann, IV Logan, L Robert,
Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A Smith. 2019. Knowledge enhanced contex-
tual word representations. In EMNLP, pages 43-54.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Guihong Cao, Daxin Jiang, Ming
Zhou, and 1 others. 2020. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
Attention and Supervised Data Improve Slot Filling.
In EMNLP, pages 35-45.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced Language Representation with Informative
Entities. In ACL, pages 1441-1451.

Appendix
A Use of AI-Based Tools

This appendix documents the use of artificial intel-
ligence (Al)-based tools in the preparation of this
academic work.

List of Steps Involving AI-Based Tools

* DeepSeek: I consulted DeepSeek models to
learn more formal organization of an con-
clusion chapter. The suggested frameworks
were adapted and rewritten entirely in my own
words. I also referred to DeepSeek during de-
bugging to understand and resolve specific
error messages.

QuillBot: QuillBot was used sparingly to
rephrase sentences for improved readability
and flow. All suggestions were manually re-
viewed and edited to ensure alignment with
my original intent and academic style.

DeepL and Youdao Translation: DeepL. and
Youdao Translation assisted in translating a
small number of technical terms and short
phrases from Chinese to English to clarify
meaning during drafting. These translations
were verified and incorporated into my own
text.

	Introduction
	Background: The K-Adapter Framework
	Architecture and Method

	Experimental Setup
	Tasks and Datasets
	Model and Baselines
	Implementation Details

	Experiments and Results
	Fine-tuning vs. Zero-shot Transfer
	Fine-tuning Performance on OpenEntity
	Zero-shot Transferability

	Ablation Studies on Adapter Architecture
	Impact of Adapter Size
	Impact of Insertion Position
	Impact of Internal Complexity

	Efficiency and Pre-training Data Analysis
	Parameter and Inference Efficiency
	Impact of Pre-training Data

	Discussion and Conclusion
	Use of AI-Based Tools

