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Abstract

This project report presents a study of con-
volutional neural networks (CNNs) for plant
species recognition, focusing on the inter-
action between model architecture, dataset
scale, and transfer learning strategies. On
the small-scale Plant Seedlings dataset, a pre-
trained ResNet-18 reaches 97.7% accuracy,
while ConvNeXt-Tiny shows limited conver-
gence when trained from scratch. In contrast,
on the larger and more complex LeafSnap
dataset, the pretrained ConvNeXt-Tiny attains
a higher F1-score (0.979 vs. 0.965 for ResNet-
18), reflecting its greater capacity. Experiments
also demonstrate that pretraining on a large, in-
domain dataset yields a stronger initialization
for fine-tuning on smaller tasks than generic
ImageNet pretraining. These results show that
the optimal architecture depends on dataset
scale and complexity, and that in-domain trans-
fer learning can provide clear advantages over
standard ImageNet pretraining for specialized
tasks.1

1 Introduction

Automated plant identification is a cornerstone of
modern ecological monitoring and precision agri-
culture. Deep learning, particularly Convolutional
Neural Networks (CNNs), has become the state-of-
the-art approach (Kumar et al., 2012). However,
deploying a robust system requires overcoming two
primary challenges: the task’s inherent nature as
a fine-grained visual classification (FGVC) prob-
lem and the domain shift between controlled and
in-the-wild imagery.

This paper investigates these challenges through
a series of structured experiments to understand
how model architecture, dataset properties, and
pretraining strategies interact. We aim to answer
three key research questions:

1Codes are publicly available at https://github.com/
BufferHund/PlantRecognition_SemesterProject

1. How does the performance of different archi-
tectures scale with dataset size and complex-
ity?

2. Can pretraining on a large, in-domain plant
dataset provide a better starting point for fine-
tuning on a smaller, related task than generic
ImageNet pretraining?

3. What is the impact of leveraging a massive
but potentially noisy in-domain dataset (iNat-
uralist) for pretraining?

By addressing these questions, we provide practical
guidance for selecting optimal models and training
paradigms for plant recognition systems.

2 Experiment 1: Architecture
Benchmarking on a Small-Scale Dataset

2.1 Dataset and Preprocessing

Our initial benchmark utilized the Plant Seedlings
dataset (Giselsson et al., 2017), a collection of
4,750 images across 12 seedling species. Its con-
trolled environment provides an ideal testbed for
evaluating the core learning capacity of different
models. We employed a 90%/10% stratified split.
To prevent overfitting, we implemented a strong
augmentation pipeline featuring ’RandAugment’
(Cubuk et al., 2020) and ’RandomErasing’ (Zhong
et al., 2020), which encourages models to learn
robust and generalizable features.

2.2 Methodology and Training Strategies

We compared three architectures representing dif-
ferent complexity levels: our custom lightweight
CustomCNN-S (1.3M parameters), the canonical
ResNet-18 (11.2M parameters), and the modern
ConvNeXt-Tiny (27.8M parameters).

A unified, high-performance training framework
was used for fair comparison:

https://github.com/BufferHund/PlantRecognition_SemesterProject
https://github.com/BufferHund/PlantRecognition_SemesterProject


• Optimizer: AdamW paired with the OneCy-
cle learning rate policy (Smith, 2018) to pro-
mote faster convergence and locate better min-
ima.

• Regularization: Mixup (Zhang et al., 2017)
and CutMix (Yun et al., 2019) were used to
create synthetic training samples, pushing the
model to learn more invariant features.

• Progressive Resizing: Models were first
trained on 224× 224 images and then briefly
fine-tuned on a higher resolution (288× 288)
to refine feature extraction.

2.3 Results and Discussion

The results, summarized in Table 1, highlight the
critical importance of transfer learning in data-
constrained settings.

Table 1: Performance on the Plant Seedlings validation
set. Pretrained models significantly outperform those
trained from scratch.

Training Regime Model Params (M) Acc. (%) F1

From Scratch
CustomCNN-S 1.3 88.2 0.861
ResNet-18 11.2 96.4 0.961
ConvNeXt-Tiny 27.8 59.2 0.496

ImageNet Pretrained
ResNet-18 11.2 97.7 0.974
ConvNeXt-Tiny 27.8 96.6 0.961

The pretrained ResNet-18 emerged as the
top performer. Most notably, the from-scratch
ConvNeXt-Tiny model failed to converge effec-
tively (Figure 1). This result vividly demonstrates
the "data hunger" of modern architectures with
weaker inductive biases. Without the strong struc-
tural priors of ResNet or the guidance of pretrain-
ing, ConvNeXt’s vast parameter space could not
be optimized on the limited data. This finding sug-
gests that for smaller, specialized datasets, a classic
pretrained architecture is the most reliable choice.

A detailed model-by-model analysis, including
confusion matrices and PCA feature space visual-
izations is provided in the Appendix.

3 Experiment 2: Generalization and
Fine-Grained Analysis on a Large-Scale
Dataset

To test our initial conclusions under more demand-
ing conditions, we evaluated the pretrained mod-
els on the larger and more complex LeafSnap
dataset, probing their generalization on a challeng-
ing FGVC task.

Figure 1: Validation F1-score on the Seedlings dataset.
The plot highlights the robust convergence of ResNet-18
and the training failure of from-scratch ConvNeXt-Tiny.

3.1 Dataset and Domain Adaptation
We curated a subset of the LeafSnap dataset (Ku-
mar et al., 2012) containing the top 50 species
(with ≥80 images each). To test domain general-
ization, we merged images from both "lab" (clean
background) and "field" (natural background) set-
tings. An 85%/15% stratified split was used. To
address the natural class imbalance, we employed
a ’WeightedRandomSampler’ during training to
ensure minority classes were not overlooked.

3.2 Methodology
Both ImageNet-pretrained models (ResNet-18 and
ConvNeXt-Tiny) were fine-tuned for 20 epochs
using the AdamW optimizer with a learning rate of
2×10−4. Augmentations included ’RandAugment’
and ’ColorJitter’ to suit the dataset’s diversity.

3.3 Results: Model Capacity Matters at Scale
In a reversal of the findings from Experiment 1, the
higher-capacity ConvNeXt-Tiny delivered supe-
rior performance on the larger LeafSnap dataset
(Table 2).

Table 2: Performance on the LeafSnap validation
set. The higher-capacity ConvNeXt-Tiny outperforms
ResNet-18.

Model Val. Acc. (%) Val. F1

ResNet-18 96.8 0.965
ConvNeXt-Tiny 97.8 0.979

The convergence plot (Figure 2) reinforces this,
showing that ConvNeXt-Tiny not only converged
faster but also maintained a consistent performance
advantage, indicating its ability to better leverage
the richer dataset.



Figure 2: Validation F1-score on LeafSnap. ConvNeXt-
Tiny demonstrates faster convergence and achieves a
higher final performance.

3.4 Per-Class Analysis

A granular analysis of per-class F1-scores reveals
the architectural trade-offs. ResNet-18’s most sig-
nificant advantage was on prunus sargentii (+0.23
F1), a species with distinct, serrated leaf margins
that may align well with the localized convolutional
filters of ResNet (Figure 3).

Figure 3: Top 10 species where ResNet-18’s F1-score
was higher. The advantage is most dramatic for prunus
sargentii.

Conversely, ConvNeXt-Tiny excelled on species
known to be visually similar, such as ostrya vir-
giniana and carpinus caroliniana (Figure 4). This
suggests that ConvNeXt’s larger effective receptive
fields are superior at capturing the subtle, holistic
patterns required to differentiate these challenging
FGVC cases.

4 Experiment 3: In-Domain vs. Generic
Transfer Learning

4.1 Motivation and Setup

This experiment investigates whether pretraining
on a large, in-domain dataset (LeafSnap) offers
a better starting point for a smaller target task
(Plant Seedlings) than generic ImageNet pretrain-
ing. We pretrained ConvNeXt-Tiny on LeafSnap

Figure 4: Top 10 species where ConvNeXt-Tiny’s
F1-score was higher, highlighting its strength in fine-
grained differentiation.

and then applied two transfer strategies to the Plant
Seedlings dataset:

• Full Fine-Tuning (Full-FT): All model pa-
rameters were updated on the target dataset
for 30 epochs.

• Linear Probing + Gradual Unfreezing
(LP+Unfreeze): Only the classification head
was trained for 5 epochs, after which the back-
bone layers were progressively unfrozen over
15 epochs.

4.2 Results and Discussion

The results in Table 3 and Figure 5 clearly show
that Full-FT is the superior strategy. It quickly
reached a high F1-score and achieved a final per-
formance that surpasses all previous results on the
Plant Seedlings dataset.

Table 3: Experiment 3: Transfer from LeafSnap to Plant
Seedlings.

Strategy Best Val Acc Best Macro-F1

Full Fine-Tuning 0.979 0.978
LP + Unfreeze 0.918 0.910

Figure 5: Validation F1 for Full-FT vs. LP+Unfreeze.
Full fine-tuning demonstrates significantly better and
faster convergence.



This experiment demonstrates that while in-
domain pretraining provides a powerful feature rep-
resentation, its full potential is only unlocked when
the entire model is allowed to adapt to the target
data distribution via full fine-tuning.

5 Experiment 4: Impact of Large-Scale,
Noisy Pretraining

5.1 Experimental Setup

To evaluate the impact of even larger-scale pre-
training, we trained ConvNeXt-Tiny on a mas-
sive subset of the iNaturalist dataset containing
only Plantae entries. We then transferred this
model to the Plant Seedlings dataset using two
strategies: (1) full fine-tuning (EXP4 Full-FT)
and (2) linear probing with gradual unfreezing
(EXP4 LP+Unfreeze). Their performance was
compared against the two baselines from Experi-
ment 3: LeafSnap-pretrained Full-FT (EXP3 Full-
FT) and LP+Unfreeze (EXP3 LP+Unfreeze).

5.2 Results and Discussion

As shown in Table 4 and Figure 6, the iNaturalist
pretraining provided a strong initialization. The
EXP4 Full-FT model converged rapidly, achiev-
ing a final macro F1-score of 0.965 and vali-
dation accuracy of 0.968, only slightly below
the best-performing model EXP3 Full-FT (0.978)
but clearly surpassing both LP+Unfreeze base-
lines. The EXP4 LP+Unfreeze variant achieved
0.938 macro F1, representing a gain over EXP3
LP+Unfreeze (0.910) but still trailing behind both
full fine-tuning runs.

Table 4: Experiment 4: Transfer from iNaturalist to
Plant Seedlings.

Strategy Best Val Acc Best Macro-F1

Full Fine-Tuning 0.968 0.965
LP + Unfreeze 0.945 0.938

Per-class analysis (Figure 7) shows that while
EXP3 Full-FT retains a slight edge on high-support
classes such as Maize, the performance gap across
most species is minimal. These results reinforce
two conclusions: (1) full fine-tuning consistently
outperforms LP+Unfreeze regardless of pretraining
source, and (2) large-scale, diverse pretraining can
yield near state-of-the-art performance even com-
pared to smaller but in-domain pretraining, pro-
vided that the entire model is fine-tuned.

Figure 6: Validation F1 over epochs for all four transfer
strategies. iNaturalist pretraining (EXP4) leads to rapid
convergence and strong final performance.

Figure 7: Per-class F1 difference (EXP4 Transfer minus
EXP3 Full-FT). Performance is comparable across most
classes.

Figure 8: Top per-class F1 gains from EXP4 relative to
EXP3 Full-FT.



6 Overall Discussion

Our multi-stage study provides an integrated view
of the trade-offs involved in model selection for
plant recognition.

Experiment 1 showed that on a small, clean
dataset, the strong inductive bias of a classic ar-
chitecture such as ResNet-18 acted as an effec-
tive regularizer, yielding higher accuracy than a
higher-capacity ConvNeXt-Tiny, which was more
prone to overfitting. Experiment 2 revealed a dif-
ferent trend: on a larger and more varied dataset,
ConvNeXt-Tiny’s greater capacity offered an ad-
vantage, enabling it to learn finer-grained features
and outperform ResNet-18.

Experiments 3 and 4 extended this analysis to
pretraining strategies. The results indicate that pre-
training on large, in-domain datasets (LeafSnap,
iNaturalist) generally provides a stronger starting
point than generic ImageNet pretraining, leading
to faster convergence and improved performance.
This benefit was most evident when the entire
model was fine-tuned, allowing the learned fea-
tures to align more closely with the target task.

Taken together, these findings support a central
conclusion: there is no universally “best” architec-
ture or pretraining method. The optimal choice de-
pends on balancing model capacity with the scale,
diversity, and domain similarity of the available
data.

7 Conclusion and Future Work

This work provides practical guidance for aligning
model architectures with dataset characteristics in
plant species recognition.

• For smaller, controlled datasets (under
roughly 10k images), a pretrained ResNet-18
achieved a consistent balance of performance
and training stability.

• For larger, fine-grained tasks (over roughly
20k images with many similar classes), the
higher capacity of a modern architecture such
as ConvNeXt-Tiny delivered stronger perfor-
mance.

Across these scenarios, our results highlight the
central role of transfer learning in specialized vi-
sion domains. While ImageNet remains a strong
generic baseline, pretraining on large, in-domain
datasets produced additional gains, particularly
when full fine-tuning was applied.

Future work will include developing ensemble
methods that integrate ResNet-18 and ConvNeXt-
Tiny according to their respective strengths, and
evaluating specialized FGVC techniques such as
attention-based part localization or metric learning
to improve performance on the most challenging
species.
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Appendix

A Confusion Matrices (Row-Normalized)

The row-normalized confusion matrices provide
a granular view of per-class classification perfor-
mance. The plots for the pretrained ResNet-18
and ConvNeXt-Tiny models exhibit strong diago-
nal dominance, indicating high and consistent ac-
curacy across all classes. In contrast, the models
trained from scratch, particularly the custom CNN,
show significant off-diagonal noise. This pattern
visually confirms the quantitative results from our
experiments, highlighting the superior discrimina-
tive ability conferred by transfer learning.

Figure 9: Confusion Matrix (Row-Normalized) – cus-
tomcnn_scratch.

Figure 10: Confusion Matrix (Row-Normalized) – con-
vnext_tiny_scratch.

Figure 11: Confusion Matrix (Row-Normalized) – con-
vnext_tiny_pretrained.

Figure 12: Confusion Matrix (Row-Normalized) –
resnet18_scratch.

Figure 13: Confusion Matrix (Row-Normalized) –
resnet18_pretrained.



B PCA of Validation Features

To visualize the quality of the learned feature rep-
resentations, we project the validation embeddings
into a two-dimensional space using PCA. The re-
sulting plots clearly demonstrate that the pretrained
models learn a highly structured and separable fea-
ture space, evidenced by the tight, distinct intra-
class clusters. Conversely, the feature space of the
models trained from scratch is largely overlapping
and poorly defined, indicating a limited capacity
to extract discriminative features from the training
data.

Figure 14: PCA Feature Space – customcnn_scratch.

Figure 15: PCA – convnext_tiny_scratch.

Figure 16: PCA – convnext_tiny_pretrained.

Figure 17: PCA Feature Space – resnet18_scratch.

Figure 18: PCA Feature Space – resnet18_pretrained.



C Class Activation Map (CAM)
Visualization Across Models

Class Activation Maps (CAMs) offer insight into
the models’ decision-making process by highlight-
ing the image regions most influential for a given
prediction. The visualizations reveal that the pre-
trained architectures learn to focus their attention
precisely on salient plant structures, such as leaf
margins and stems. In sharp contrast, the mod-
els trained from scratch often produce diffuse ac-
tivations that incorrectly emphasize background
elements, explaining their lower performance and
demonstrating the value of pretraining for learning
a robust semantic focus.

Figure 19: CAMs – customcnn_scratch.

Figure 20: CAMs – convnext_tiny_scratch.

Figure 21: CAMs – convnext_tiny_pretrained.

Figure 22: Representative CAMs – resnet18_scratch.

Figure 23: CAMs – resnet18_pretrained.



D Use of AI-Based Tools

This appendix documents the use of artificial intel-
ligence (AI)-based tools in the preparation of this
academic work.

List of Steps Involving AI-Based Tools
• DeepSeek: I consulted DeepSeek models to

learn more formal organization of the con-
clusion and appendix chapter. The suggested
frameworks were adapted and rewritten en-
tirely in my own words. I also referred to
DeepSeek during debugging to understand
and resolve specific error messages.

• QuillBot: QuillBot was used sparingly to
rephrase sentences for improved readability
and flow. All suggestions were manually re-
viewed and edited to ensure alignment with
my original intent and academic style.

• DeepL and Youdao Translation: DeepL and
Youdao Translation assisted in translating a
small number of technical terms and short
phrases from Chinese to English to clarify
meaning during drafting. These translations
were verified and incorporated into my own
text.
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